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Lectures 

S  Lectures in Slovenian 

S  Slides in English  (available at Ucilnica) 

S  (slides in Slovenian to be completed and available soon)
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S  J.E.Hopcroft, J.D.Ullman.  Introduction to Automata Theory, Languages, 
and Computation, Addison-Wesley, 1st ed., 1979

S  S.Arora, B.Barak. Computational Complexity : A Modern Approach, 
Cambridge University Press, 2009 

S  B.Robič. O rešljivem, nerešljivem, obvladljivem in neobvladljivem  

http://www.delo.si/znanje/znanost/o-resljivem-neresljivem-obvladljivem-in-neobvladljivem.html  

S  B.Robič.The Foundations of Computability Theory, Springer, 2015             
(2nd ed., Nov. 2020) 
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1   Preliminaries 

2   Finite Automata and Regular Expressions 

3   Properties of  Regular Sets 

4   Context-Free Grammars and Languages 

5   Pushdown Automata 

6   Properties of  Context-Free Languages 
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  7   Turing Machines 

  8   Undecidability 

  9   (The Chomsky Hierarchy) 

10   Computational Complexity Theory 

11   Intractable Problems  

12   (Coping With Intractable Problems)  
   (Approximation, Probabilistic, Parallel, Quantum) 

 

 



Dictionary 

Finite automata končni avtomati/regular exspressions regularni izrazi/context/free grammars 
kontekstno neodvisne gramatike/pushdown automata skladovni avtomati/context/free languages 
kontekstno neodvisni jeziki/Turing machines Turingovi stroji/undecidability neodločljivost/ 
Chomsky hierarchy hierarhija Chomskega/computational complexity računska zahtevnost/ 
intractable problems neobvladljivi problemi/approximation algorithms aproksimacijski algoritmi/  
probabilistic (or randomized) algorithms verjetnostni (ali naključnostni) algoritmi/parallel 
algorithms vzporedni algorithmi/quantum algorithms kvantni algoritmi/ 
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Exercises-Exams-Advices 

 

Exercises 
Teaching assistants:  dr. Uroš Čibej,  dr. Luka Fürst,  Žiga Lesar 

Exercises: from October 19 on. 

Exams 
The rules will soon appear at Učilnica. 

An advice 
There are about 300 slides of  (relatively) difficult matter.  How to succeed? 

S  Recall basic math: logic (predicate calculus), sets, relations, functions. 

S  Read the next 20 transparences in advance before the next lecture. 

S  Try to understand them, prepare questions. 

S  Attend the lecture, ask the questions. 

S  Learn orderly. 

S  Attend exercises, do homework, ask, be active. 
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Synopsis of the Course 

Computer Science has two major areas:  

1  Theoretical Computer Science (TCS), which investigates                  
the fundamental ideas and models underlying computing;                  

2  Practical/Engineering Computer Science, which is needed and/or 
applied in the design of  computing systems (hardware and software).  
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What are the goals of  TCS? Who needs TCS?  

S  The goal of  TCS is to analyze and formalize  
S  what engineers have done,  

S  what engineers could do (at least in principle), 

S  what engineers cannot do (in principle!). 
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How does TCS pursue its goals? 

S  To achieve its goals,TCS: 
S  mathematically models computation and computational problems;  

S  solves computational problems algorithmically; 

S  distinguishes what can be algorithmically solved from what cannot;  

S  determines the necessary and sufficient resources (time, space, processors, …)                
to algorithmically solve a given problem. 

S  To carry this out, TCS uses various models of  computation. 



What is a model of  computation?  

S  Definition. A model of  computation is a formal definition of     
the basic notions of  algorithmic computation. It rigorously defines  
S  what is meant by the notion of  the algorithm, 

S  what is the environment required to execute the algorithm, 

S  how the algorithm executes in this environment. 

S  Models of  computation enable us to use mathematics in TCS.                   
(So we can develop TCS in a rigorous way and avoid deceptive intuition.) 
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There are different kinds of  models of  computation. Why? 

S  Because TCS has its roots in diverse fields of  science: 
S  Mathematics                    (problems in logic and foundations of math) 

S  Linguistics                                  (grammars for natural languages) 

S  Electrical Engineering           (switching theory in hardware design)   

S  Biology                                                        (models of  neuron nets)  

S  Quantum Physics         (quantum algorithms in quantum mechanics) 

S  Out of  these fields emerged various models of  computation.  
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 Some models of  computation are central to TCS. These are: 
S  Finite Automata 

S  Pushdown Automata 

S  Turing Machines 

Many other models of  computation are also important: 
S  two-way finite automata, Moore machines, Mealy machines, … 

S  linear bounded automata, …  

S  register machines (RAM, RASP), …  

S  general recursive functions,λ-calculus,μ-recursive functions, Post machines, Markov algorithms  

S  cellular automata (Game of  Life), DNA-calculus, …               

S  quantum Turing machines, … 
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S 

1  
Preliminaries 
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Contents 

S  Propositional and Predicate calculus 

S  Sets 

S  Relations 

S  Formal languages 

S  Graphs  

S  Proofs 
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1.1 Propositional and Predicate 
Calculus 

S  Propositional Calculus  
S  Logical values:           True ⟙, False ⊥ 
S  Logical variables:       A, B, C, … , Z,  a, b, c, … , z  …. can have logical value 
S  Logical connectives:  ¬, ⋀, ⋁, ⇒, ⟺ 
S  Logical formulas:       an example:    a ⋀ b ⇒ a ⋁ b 

S  Tautologies:                an example: de Morgan’s law:  ¬(a ⋀ b) ⟺ ¬a ⋁ ¬b 

S  Predicate Calculus 
S  Propositional Calculus 
S  Predicates:         P, Q, R, … can be true of  false 
S  Quantifiers:      ∀, ∃    … forall, exists 
S  Formulas:         an example:  ∀m∃n: P(m,n)  … for every m there exists an n such that P(m,n) is true  
S  Tautologies:     an example:  ¬[∀x: P(x)]  ⟺ ∃x : ¬P(x)  
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1.2 Sets 

S  A set is a collection of  objects (members) without repetition.  

S  Finite sets may be specified by listing their members between 
brackets. Example. {0, 1} is a set; {a,b,c,d,e,f,g,h,i,j,k} is a set. 

S  We also specify sets by set formers: 

     or 

S  Example.  {i 2 N | there is integer j such that i = 2j}
{x 2 A |P (x)} . . . the set of x in A such that P (x) is true

{x |P (x)} . . . the set of objects x such that P (x) is true
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{i 2 N | 9j(j 2 N) : i = 2j}



S  If  every member of  A is a member of  B, then we write A⊆B 
and say A is contained in B. B ⊇A is synonymous with A⊆B.  

S  If  A⊆B but A ≠ B, then we write A ⊊ B or A ⊂ B.                                   
In this case we say that A is properly contained in B. 

S  Sets A and B are equal if  they have the same members.      
That is, A=B  iff  A⊆B and B⊆A. 
(Here, iff  means ‘if  and only if.’)  
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The usual operations on sets are: 

S  A∪B, the union of  A and B, is  

S  A∩B, the intersection of  A and B, is  

S  A − B, the difference of  A and B, is  

S  A × B, the Cartesian product of  A and B, is  

S  2A, the power set of  A, is  
(The alternative notation for the power set of  A is P(A).)  

 

{x |x 2 A or x 2 B}

{x |x 2 A and x 2 B}

{x |x 2 A and x /2 B}

{(x, y) |x 2 A and y 2 B}

{X |X ✓ A}
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S  Sets A and B have the same cardinality if  there is a bijection f :A→B. 
S  Finite sets:  

S  If  A is a finite set, then its cardinality is a natural number, which denotes 
the number of  its members.  

S  If  A,B are finite sets and A⊂B, then A and B have different cardinalities.  

S  Infinite sets:  
S  If  A,B are infinite and A⊂B, then A and B may have the same cardinality!  

Example. Let A = Even integers, and B = Integers. Although A⊂B, there is 
a bijection f : A → B, namely f      : i ⟼ i/2. 

S  Not all infinite sets have the same cardinality. Example.                . Sets 
that can be injectively mapped into    are countable or countably infinite. 
Examples.     and      are countably infinite. The set 2   (of  all subsets of    )      
and the set of  all functions from      to{0,1} have the same cardinality 
as    , so they are not countable. 

N and R
N

Q ⌃⇤ N

R
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1.3 Relations 

S   A binary relation R is a set of  pairs: 

  

S  The first component of  each pair is chosen from a set A called 
the domain of  R, and the second component of  each pair is 
chosen from a (possibly different) set B called the range of  R.  

S  When A and B are the same set S, we say the relation is on S. 
If  R is a relation and (a, b) is a pair in R, we often write aRb. 

R = {(a, b) | a 2 A and b 2 B}
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There are important properties of  relations that a relation R on S 
may or may not have. In particular, we say that a relation R on S is 

S  reflexive if  aRa for all               ………………………………         

S  irreflexive if  aRa is false for all              ………………… 

S  transitive if  aRb and bRc imply aRc   … 

S  symmetric if  aRb  implies bRa   ………………… 

S  asymmetric if aRb  implies that bRa is false … 

     Note: any asymmetric relation is irreflexive. 
S  Example.  Relation < on     is transitive and asymmetric (so irreflexive). 

a 2 S

a 2 S

Z
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tj. 8a 2 S : aRa

tj. 8a 2 S : ¬(aRa)

tj. 8a, b, c 2 S : aRb ^ bRc ) aRc

tj. 8a, b 2 S : aRb ) bRa

tj. 8a, b 2 S : aRb ) ¬(bRa)



A relation R that is reflexive, symmetric, and transitive is said to 
be an equivalence relation.  

S  An equivalence relation R on a set S partitions S into disjoint 
nonempty equivalence classes  

S  That is,                                ,where for every i  and j ⧧ i : 
S     

S  for each                , aRb is true  (i.e. aRb) 

S  for each                                , aRb is false (i.e. ¬(aRb) ) 

S  The sets Si are called equivalence classes.                                        
Note: the number of  equivalence classes may be infinite. 

S = S1 [ S2 [ . . .

Si \ Sj = ;
a, b 2 Si

a 2 Si and b 2 Sj
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Example.   

S  Define the relation R on     as follows: i R j  iff  i = j mod m.  

S  R is an equivalence relation on    . (Prove!) 

S  Equivalence classes of  R are: 
S            = {…,       -2m,       -m,       0,        m,        2m,     ...} 

S            = {…,      -2m+1,  -m+1,   1,       m+1,   2m+1, ...} 

               ⋮ 

S            = {…,      -2m-1,      -1     m-1,   2m-1,   3m-1,   ...} 

Z

Z
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Let P be a set of  (some) properties of relations. The P-closure of  a 
relation R is the smallest relation that contains R and has all the 
properties in P. Examples: 

S  Let P ={transitivity}. Then P-closure of  a relation R is denoted by 
R+, called the transitive closure of  R, and defined by  
1)  If  aRb, then aR+b.    
2)  If  aR+b and bRc, then aR+c.  
3)  Nothing is in R+ unless it so follows from 1) and 2). 
 
Intuitively, R+ is the smallest transitive relation containing R. It is obtained from R by adding to R minimum number 
of  pairs so that the obtained set (called R+) is transitive. 

S  Let P ={reflexivity, transitivity}. Then P-closure of  a relation R is 
denoted by R*, called the reflexive and transitive closure of  R, and 
defined by  R* = R+∪{(a,a)|a ∊S}. 
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 1.4 Formal Languages 

S  A symbol is an abstract entity that we shall not define formally. 
Example. Letters and digits are frequently used symbols. 

S  A string (or word) is a finite sequence of symbols juxtaposed. 
Example. a, b, and c are symbols and abcb is a string.           
The length of a string w, denoted |w|, is the number of symbols 
composing w. E.g., abcb has length 4. The empty string, 
denoted by ε, is the string consisting of zero symbols. So |ε|=0. 
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S  A prefix of a string is any number of leading symbols of that 
string, and a suffix is any number of trailing symbols.          
Example. abc has prefixes ε, a, ab, abc, and suffixes ε, c, bc, abc. 
A prefix or suffix of a string, other than the string itself, is 
called a proper prefix or suffix. 

S  The concatenation of two strings is the string formed by writing 
the first, followed by the second, with no intervening space. 
Example. The concatenation of dog and house is doghouse. 
Juxtaposition is used as the concatenation operator. That is, if 
w and x are strings, then wx is the concatenation of these two 
strings. The  ε is the identity for the concatenation operator. 
That is, εw  = wε = w  for each string w. 
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S  An alphabet is a finite set of  symbols.   

S  A (formal) language is a set of  strings of  symbols from some 
alphabet. The empty set,   , and the set consisting of  the empty 
string, {ε}, are languages. They are distinct. 
S  Example. The set of  palindromes (words that read the same in both 

directions) over the alphabet {0, 1} is an infinite language. Some of  its 
members are ε, 0, 1,  00, 11, 010,  1101011.  

S  Another language is the set of  all strings over a fixed alphabet    . 
We denote this language by    .   
S  Example. If      = {a}, then       = {ε, a, aa, aaa, aaaa, . . .}.                                        

If      = {0,1}, then       = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .}. 
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1.5 Graphs 

S  An undirected graph, denoted G  = (V, E), consists of  a finite 
set V of  vertices (or nodes) and a set E of  pairs of  vertices 
called edges.  
S  Example. V ={1,2,3,4,5}, E ={{n,m}|n+m = 4 or n+m = 7}. 

  

 

S  A path in a graph is a sequence of  vertices vl, v2, …, vk, k ≥1, 
such that there is an edge {vi, vi+1} for each i, 1≤ i < k. The 
length of  the path is k--1. Example. 1, 3, 4 is a path in the 
above graph; so is 5 by itself. If  v1=vk, the path is a cycle.  

3

1

4
25
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S  A directed graph (or digraph), denoted G  = (V, A), consists 
of  a finite set V of  vertices and a set A of  ordered pairs of  
vertices called arcs. We also denote an arc (u,v) by u ➝ v. 
S  Example. 

  

S  A path in a digraph is a sequence of  vertices vl, v2, …, vk,     
k ≥1, such that vi ➝ vi+1 is an arc for each i, 1≤ i < k. We say 
the path is from vl  to vk. Example. l ➝ 2 ➝ 3 ➝ 4 is a path 
from 1 to 4. If  u ➝ v is an arc we say that u is a predecessor 
of  v (and v is a successor of  u). 

31 42
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S  A tree is a digraph with the following properties:   
S  1)  There is exactly one vertex, called the root, that has no   

   predecessors and from which there is a path to every vertex.   

S  2)  Each vertex other than the root has exactly one predecessor.   

S  3)  The successors of  each vertex are ordered "from the left."                       

S  A successor of  a vertex is called a son, and the predecessor is 
called the father. If  there is a path from vi to vj, then vi is said 
to be ancestor of  vj (and vj is a descendant of  vi ). A vertex 
with no sons is a leaf, the other vertices are interior vertices. 
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Example. 

3

1

4

2

5

6 7 8 9

10 11 12 13 14 15

16 17 18 19 20 21

A (directed) tree.  root 

leaf  

leaves 

father 

son 
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1.6 Proofs 

S  Many theorems are proved by mathematical induction.  

S  The Principle of  Mathematical Induction:                                
 Let P(n) be a statement (proposition) about a natural number n. 
 Then:              
           If  P(0) holds and P(k-1) ⇒ P(k) holds for any k ≥ 1,                              
          then P(n) holds for every n ≥ 0. 

S  P(0) is called the basis, P(k-1) is the inductive hypothesis, and  
P(k-1) ⇒ P(k) is the inductive step. 
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Example. Proposition:  

Basis [take n = 0 in P(n)] 

Inductive hypothesis [suppose P(k-1) holds] 

Inductive step [does P(k-1) ⇒ P(k) hold? Apply ind.hyp. to answer the question.] 

k�1X

i=0

i2 =
(k � 1)k(2k � 1)

6
holds.

kX

i=0

i2 =
k�1X

i=0

i2 + k2
Ind.hyp.

=
(k � 1)k(2k � 1)

6
+ k2 = . . . =

k(k + 1)(2k + 1)

6

So, P (k) holds. Hence P (k � 1) ) P (k) holds.

QED. 

PROOF. 
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Conclusion: P(n) holds for every natural n. 

P (n) ⌘
nX

i=0

i2 =
n(n+ 1)(2n+ 1)

6
0X

i=0

i2 = 0 =
0(0 + 1)(2 · 0 + 1)

6
. So P (0) holds.



1.7 Exercises 

1. A palindrome can be defined as a string that reads the same forward and backward, or by the following 
definition: 

a) ε is a palindrome. 
b)  If  a is any symbol, then the string a is a palindrome. 
c)  If  a is any symbol and x is a palindrome, then axa is a palindrome. 
d)  Nothing is a palindrome unless it follows from (1, 2, 3). 

      Prove by induction that the two definitions are equivalent. 

2. The strings of  balanced parentheses can be defined in at least two ways. 

     A string w over alphabet {(,)} is balanced if  and only if: 

        1)    a)  w has an equal number of  (‘s and )'s, and 
       b)  any prefix of  w has at least as many (‘s as )'s. 

        2)   a) ε is balanced. 
      b)  If  w is a balanced string, then (w) is balanced. 
       c)  If  w and x are balanced strings, then so is wx 
      d)  Nothing else is a balanced string. 

       Prove by induction on the length of  a string that (1) and (2)  define the same class of  strings. 
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3. Show that the following are equivalence relations and give their equivalence classes.  

    a)   The relation R1 on integers defined by iR1j if  and only if  i = j.  

    b)   The relation R2 on people defined by pR2 q if  and only if  p and q were born at the      

           same hour of  the same day of  some year. 

    c)   The same as (b) but "of  the same year" instead of  "of  some year.” 

4. Find the transitive closure, the reflexive and transitive closure, and the symmetric closure of  the relation                    

   {(1,2), (2, 3), (3, 4), (5, 4)} 
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1.8 Dictionary 

Symbol simbol letter črka digit števka string niz word beseda length dolžina empty string prazna 
beseda prefix predpona suffix pripona proper pravi concatenation stik  to juxtapose stakniti, pripeti 
juxtaposition stik alphabet abeceda formal language  formalni jezik palindrome palindrom graph graf  
vertex, node vozlišče edge povezava path pot cycle cikel directed graph usmerjen graf  predecessor 
predhodnik  successor naslednik tree drevo ancestor prednik descendant potomec leaf  list interior 
vertex notranje vozlišče mathematical induction matematična indukcija inductive hypothesis 
induktivna hipoteza basis osnova inductive step korak indukcije, indukcijski korak set množica 
member pripadnik, element contain vsebovati properly contain strogo vsebovati equal enak operation 
operacija union unija  intersection presek difference razlika Cartesian product kartezični produkt 
power set potenčna množica cardinality moč countable števna countably infinite števno neskončna  
binary relation binarna relacija domain domena range zaloga vrednosti reflexive refleksivna 
irreflexive irefleksivna transitive tranzitivna symmetric simetrična asymmetric asimetrična 
equivalence relation ekvivalenčna relacija partition razbitje, razdelitev equivalence class ekvivalenčni 
razred transitive closure tranzitivna ovojnica (tr. zaprtje) reflexive and transitive closure refleksivna 
tranzitivna ovojnica (refl. tr. zaprtje) model of  computation računski model finite automaton končni 
avtomat regular expression regularni izraz pushdown automaton skladovni avtomat context-free 
grammar kontekstno neodvisna gramatika Turing machine Turingov stroj intractable (or hard) 
problem neobvladljiv (oz. težek) problem 
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S 

2  
Finite Automata                  

and Regular Expressions 
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Contents 

S  Finite state systems 

S  Deterministic finite automata, DFA 

S  Nondeterministic finite automata, NFA 

S  The equivalence of  NFA and DFA 

S  Finite automata with ℇ-moves 

S  Equivalence of  NFA with and without ℇ-moves 
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 2.1 Finite State Systems 

S  A finite state system (FSS) is an object that can read 
discrete inputs and can be in any one of  a finitely many 
states (i.e., internal configurations).   
S  The state summarizes the information (concerning past inputs) that is       

needed to determine the behavior of  the system on subsequent inputs.   
 

The finite automaton is a mathematical model of  a FSS.    
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S  Examples. There are many examples of  FSSs in CS. 

S  Switching circuits (e.g., computer’s CPU). 
S  A switching circuit consists of  a finite number of  gates, each of  which can be in one of  two conditions, 0 

and 1 (different voltage levels at the gate output). 

S  The state of  a circuit with n gates can be any one of  2n assignments of  0 or 1 to the gates.  

S  (Comment. The circuitry is so designed that only the two voltages corresponding to 0 and 1 are stable; 
other voltages immediately adjust themselves to one of  these voltages. Switching circuits are 
intentionally designed in this way, so that they can be viewed as FSSs, thereby separating the logical design of  
a computer from the electronic implementation.) 

S  Certain programs (e.g., text editors and lexical analyzers)   
S  A lexical analyzer scans the symbols of  a computer program to locate the strings of  characters 

corresponding to identifiers, numerical constants, reserved words, and so on. In this process the lexical 
analyzer needs to remember only a finite amount of  information (e.g., the length of  a prefix of  a reserved 
word that has seen since startup).  

S  The theory of  finite automata is used in the design of  such FSSs. 
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Caveat. 

 

S  Later we will see that Finite Automaton is a model of  computation that   
does not completely capture the intuitive notion of computation.

S  Why? To properly capture the intuitive notion of  computation we need                         
a potentially infinite memory (even though each real computer is finite).             
Such a model of  computation will be, for example, the Turing Machine.  
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 2.2 Deterministic Finite Automata 

S  A deterministic finite automaton (DFA) consists of   
S  a finite set of  states and  

S  a finite set of  transitions from state to state                                                              
that occur on reading symbols from an input alphabet (e.g.,     ).  

S  For each input symbol there is exactly one transition out of  each state.  

S  One state, denoted q0 , is the initial state. DFA starts in q0.   

S  Some states are designated as final (or accepting) states.  

S  We say that a DFA accepts a word x if  the sequence of  transitions corresponding to 
the symbols of  x leads from the initial state q0 to an accepting state. 
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⌃
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S  A DFA is associated with a transition diagram (digraph) 
whose  
S  vertices correspond to the states of  the DFA. 

S  arcs correspond to transitions: there is an arc qi → qj                      
if  DFA moves from state qi to state qj on reading input symbol a. 

q1q0

q3q2

Start

q0  is the initial state. Final states are in double circles (here q0 ).

1

1

1

1
00

00

Example. 

a
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S  Definition. A deterministic finite automaton (DFA)              
is a 5-tuple                        where: 
S      is a finite set of  states,     

S      is a finite input alphabet,  

S               is the initial state,          

S               is the set of  final states, and    

S      is the transition function,  i.e.                           .                    
 That is,             is a state (for each state q and input symbol a).     

S  Note:    is the program of  DFA. Every DFA has its own, specific   .  

(Q,⌃, �, q0, F )

Q

⌃

�
�(q, a)

q0 2 Q

F ✓ Q

� : Q⇥ ⌃ ! Q

� �
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S  We view a DFA as   consisting of  a control unit that reads 
input word (       ) from a tape, and during this changes its state. 

S  If  it is in state q and reads symbol a, then the DFA, in one move,  
S  1) enters the next state which is 𝛿(q, a),  

S  2) shifts its window one symbol to the right.                                     

S  If  𝛿(q, a) is an accepting state, the DFA has accepted the prefix of  the input word up to (not 
including) the current position of  the window. A DFA may accept several prefixes. If  the 
window has moved off  the right end of  the input word, DFA accepts the entire word.  

tape

control unitq

0 1 1 0 0 1 0 1

window

2⌃⇤
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S  It is useful to extend 𝛿 so that it can be applied to a state and a 
string (not just one symbol). 

S  We define a function                            so that             is the state 
in which DFA is after reading x starting in state q. So            is the 
state p such that there is a path in the diagram from q to p, labeled x. 

S  The extended transition function     is defined recursively: 
S     

S                                            , for all strings w and input symbols a 

                                                                                         

S  Since                             (prove!) there can be no disagreement 
between    and   .  So, for convenience we will write    instead of   . 

 

�̂(q, ") = q

�̂(q, wa) = �(�̂(q, w), a)

�̂

�̂ : Q⇥ ⌃⇤ ! Q

�̂(q, a) = �(q, a)
�̂�� �̂

�̂(q, x)
�̂(q, x)

q prw a
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S  Definitions.  
S  A string x is said to be accepted by a DFA                               

if                        for some           . 
 

S  The language accepted by a DFA M is defined as the set                                            
  
 
 

S  A language is said to be a regular set (or just regular)                  
if  it is accepted by some DFA (i.e. if  it is L(M) for some DFA M ). 

(Q,⌃, �, q0, F )M =
�(q0, x) = p p 2 F

L(M) = {x 2 ⌃⇤ | �(q0, x) 2 F}
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S  This is the transition diagram of                                   , where 

q1q0

q3q2

Start

q0  is the initial state. Final states are in double circles (here q0 ).

1

1

1

1
00

00

Example. 

M = (Q,⌃, �, q0, F )

Q = {q0, q1, q2, q3}
⌃ = {0, 1}
F = {q0}

� 0 1
q0 | q2 q1
q1 | q3 q0
q2 | q0 q3
q3 | q1 q2
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S  Suppose that x = 110101 is input to M.  Is x ∊ L(M) ?   
S  We must compute the state 

S    

q1q0

q3q2

Start

q0  is the initial state. Final states are in double circles (here q0 ).

1

1

1

1
00

00

Example (cont’d). 
� 0 1

q0 | q2 q1
q1 | q3 q0
q2 | q0 q3
q3 | q1 q2

�(q0, 110101)
= �(q1, 10101)
= �(q0, 0101)
= �(q2, 101)
= �(q3, 01)
= �(q1, 1) = q0 2 F

�(q0, x) = �(q0, 110101).
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S  Computation of  M  on x = 110101. 

Example (cont’d). 

� 0 1
q0 | q2 q1
q1 | q3 q0
q2 | q0 q3
q3 | q1 q2

q0

1 1 0 1 0 1

1 1 10 0 1

1 10 0 11

1 10 0 1

1 0 1 0 1 10 0 1

1 10 0 1

q1

q0

q2

q3

q1 q0

1

1

1 0 1



 2.3 Nondeterministic Finite Automata 

S  A nondeterministic finite automaton (NFA) is obtained from 
DFA by allowing zero, one or more transitions from a state on 
the same input symbol; e.g., 

S  An input word                       is accepted by a NFA if  there 
exists a sequence of  transitions, corresponding to the input 
word, that leads from the initial state to some final state. 

S  Thus in a DFA, for a given input string w and state q, there will be exactly one path 
labeled w starting at q. To determine if  a string is accepted by a DFA it suffices to 
check this one path. In contrast, for an NFA there may be many paths labeled w, and 
in the worst case all must be checked to see if  at least one ends in a final state. 
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a1a2 · · · an

q2q0 q3q1
0

10
1

1
0
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S  Nondeterminism.  

S  Question: Given an input word                     , who decides whether or not 
there exists a sequence of  transitions leading from initial to some final state?                                                         
Answer: NFA itself!  

S  Question: How does NFA do that?              
Answer: The NFA is not a realistic model of  computation: it is assumed that 
NFA can always guess right. That is, it is assumed that NFA has the magic 
capability of  choosing, from any given set of  options, the right option, i.e. the 
option that leads to a success (if  such an option exists; otherwise, NFA halts). 

In particular, if  there are several transitions from a state on the same input symbol, the NFA 
can immediately choose the one (if  there is such) which eventually leads to some final state. 

S  This capability of  prediction makes NFA unrealistic. 

a1a2 · · · an



Borut Robič, Computability & 
Computational Complexity 

53 

S  Nondeterminism (cont’d).  

S  Question: If  NFA is unrealistic, who needs it?                                           
Answers:  
S  NFA (and other nondeterministic models that we will see later) can be used to find 

lower bounds on the time required to solve computational problems. The reasoning 
is as follows: If  a problem P requires time T to be solved by a nondeterministic 
model M, then solving this problem on any deterministic version D of  the model M 
must require at least time T (because D lacks the ability of  prediction). 

 We will use this in chapters on Computational  Complexity. 

S  Often it is much easier to design a NFA (or some other nondeterministic model) for a 
given problem P. We then try to construct an equivalent deterministic version 
(equivalent in the sense that it solves P too, regardless of  the time needed).  

 We will see this soon. 
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S  Definition. A nondeterministic finite automaton (NFA)             
is a 5-tuple                        ,where: 
S      is a finite set of  states,     

S      is a finite input alphabet,  

S               is the initial state,          

S               is the set of  final states, and                 ☟ 

S      is the transition function, i.e.,                             .                    

 That is,             is the set of  all states p such that there is a  
 transition labeled a from q to p.  

S  Note:    is the program of  NFA. Every NFA has its own specific   .  

 

(Q,⌃, �, q0, F )

Q

⌃

�
�(q, a)

q0 2 Q

F ✓ Q

� : Q⇥ ⌃ ! 2Q

� �
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S  This is the transition diagram of  NFA                                  , 
where 

Example. 

M = (Q,⌃, �, q0, F )

⌃ = {0, 1}

�

q3q0 q4

q1

Start
0,11

00

q2

1
0,1

0,1

Q = {q0, q1, q2, q3, q4}

F = {q2, q4}

0 1
q0 | {q0, q3} {q0, q1}
q1 | ; {q2}
q2 | {q2} {q2}
q3 | {q4} ;
q4 | {q4} {q4}
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S  We view a NFA similarly to DFA. It also reads an input tape, 
but the control unit at any time can be in any number of  states. 

S  When a choice of  the next state can be made, we may imagine that duplicate copies of  the 
automaton are made. For each possible next state there is one copy of  the automaton whose 
control unit is in that state. Example. if                                     , we imagine three copies: 

S  We imagine that each of  the copies continues execution independently of  the others in 
the same fashion. The imaginary parallel computation is described by the execution tree. 

�(qi, 1) = {qj , qk, q`}

tape

control unitqj

0 1 1 0 0 1 0 1

window

tape

control unitqk

0 1 1 0 0 1 0 1

window

tape

control unitq�

0 1 1 0 0 1 0 1

window

tape

control unit…, qi ,… 

0 1 1 0 0 1 0 1

window
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S  To describe the behavior of  a NFA on a string, we extend 𝛿 to 
apply to a state and a string (not just a symbol). 

S  We define a function                                so that             is the set 
of  states NFA can be in after reading x starting in q. So,             is 
the set of  states to each of  which there is a path from q, labeled x.  

S  The extended transition function     is defined as follows: 
S     

S    

   

S  Since                             (prove!), we will for convenience write    instead of   . 

S  It is useful to extend    to sets of states by      

�̂

�̂(q, a) = �(q, a) � �̂

�̂ : Q⇥ ⌃⇤ ! 2Q �̂(q, x)
�̂(q, x)

�̂(q, ") = {q}
q pr

w

aw

w

a

a

a

� �(S, x) =
[

q2S

�(q, x).

�̂(q, wa) = {p 2 Q | 9r 2 �̂(q, w) : p 2 �(r, a)}
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S  Definitions.  
S  A string x is said to be accepted by a NFA                               

if                contains some             (i.e,      .                   ). 
 

S  The language accepted by a NFA                                    is the set                                            
  
 
 

(Q,⌃, �, q0, F )M =
p 2 F�(q0, x)

(Q,⌃, �, q0, F )M =

L(M) = {x 2 ⌃⇤ | �(q0, x) contains a state in F}

�(q0, x) \ F 6= ;
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S  Suppose x = 01001 is input to M.  Is x in L(M) ?   
S  We must compute the state 

S    

Example (cont’d). q3q0 q4

q1

Start
0,11

00

q2

1
0,1

0,1

0 1
q0 | {q0, q3} {q0, q1}
q1 | ; {q2}
q2 | {q2} {q2}
q3 | {q4} ;
q4 | {q4} {q4}

�(q0, x) = �(q0, 01001).

�(q0, 01001) = �({q0, q3}, 1001)
= �({q0, q1} [ ;, 001) = �({q0, q1}, 001)
= �({q0, q3} [ ;, 01) = �({q0, q3}, 01)
= �({q0, q3} [ {q4}, 1) = �({q0, q3, q4}, 1)
= �({q0, q1} [ ; [ {q4}, ") = �({q0, q1, q4}, "), and q4 2 F

☟ 



 2.4 Equivalence of DFA’s and NFA’s 

S  Every DFA is also NFA.  
S  Why? A DFA can be viewed as a trivial NFA.  

S  So the class of  languages accepted by NFAs includes all the 
languages accepted by DFAs (regular sets): 
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The class of languages accepted by NFAs

The class of languages accepted by DFAs
?

Question: Are there any languages in-between?
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S  Answer: No, the two classes are equal ! 
S  How do we know that? For every NFA there is an equivalent DFA 

(i.e., one that accepts the same language as the NFA)!  

S  The next theorem shows how we construct the equivalent DFA.  

S  Theorem.  Let L be a set accepted by a NFA M.                    
           Then there exists a DFA M'  that accepts L. 

S  Proof idea.  
S  The DFA M'  will simulate the NFA M. To achieve this: 

S  The states of  M' will correspond to sets of  states of  M.  

S  The control unit of  M' will keep track of  all states                                 
in which M could have been had it read the same input as M'.  
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S  Proof.  

S  Let                                     be an NFA accepting L.  

S  We define a DFA                                         as follows:  

S                  . That is, the states of  M' will represent sets of  states of  M.  How?                                            
A state of  M' will represent the set of  all states in which M could be at that moment. 

S  Notation: We will denote a state of  M’  by                          (where                               ).                           
So                         will be a state of  M’ representing the set                            of states of  M.           

S    

S    

S    

That is,    applied to a state                      of  M' is computed by (1) applying    to 
each state in                       and (2) taking the union of  the obtained sets.                        
The union is a new set of  states,                       , encoded in M’  by                      . 
This is the value of                                 .     

S  F' is the set of  all states in Q' containing at least one final state of  M. 

 

M = (Q,⌃, �, q0, F )

Q0 = 2Q

q00 = [q0]

��0

qi1 , . . . , qik 2 Q

�0([qi1 , . . . , qik ], a) = [pj1 , . . . , pj` ] i↵ �({qi1 , . . . , qik}, a) = {pj1 , . . . , pj`}

[qi1 , . . . , qik ]
[qi1 , . . . , qik ]

{qi1 , . . . , qik}

[qi1 , . . . , qik ]

{pj1 , . . . , pj`} [pj1 , . . . , pj` ]
�0([qi1 , . . . , qik ], a)

{qi1 , . . . , qik}

M 0 = (Q0,⌃0, �0, q00, F
0)

⌃0 = ⌃
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S  Proof (cont’d).  

S  Next, we show that  

 

S  We prove this by induction on the length       of  the input string x. (Exercise.) 

S   Finally, we add that  

S   Thus,  

We have proved that DFA M' accepts the same language as NFA M.                   
In this respect, M' and M are equivalent (they are equally powerful). 

|x|

L(M) = L(M 0). ⇤

�0(q00, x) = [qi1 , . . . , qik ] i↵ �(q0, x) = {qi1 , . . . , qik}, for arbitrary x 2 ⌃⇤.

�0(q00, x) 2 F 0 i↵ �(q0, x) contains a state of Q that is in F
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S  Let                                                        be an NFA where 

  

S  The DFA                                                 accepting            has:  

S                                                      , i.e. all subsets of     

S     

 

S    

Example. 

M = ({q0, q1}, {0, 1}, �, q0, {q1})
�(q0, 0) = {q0, q1}

�(q0, 1) = {q1}
�(q1, 0) = ;
�(q1, 1) = {q0, q1}

M 0 = (Q0, {0, 1}, �0, [q0], F 0) L(M)

Q0 = 2Q = {;, [q0], [q1], [q0, q1]} Q = {q0, q1}

q0 q1
0

1

0

1
1

�0(;, 0) = ;
�0(;, 1) = ;

�0([q0], 0) = [q0, q1]

�0([q0], 1) = [q1]

�0([q1], 0) = ;
�0([q1], 1) = [q0, q1]

�0([q0, q1], 0) = [q0, q1]

�0([q0, q1], 1) = [q0, q1]

�
0,1[q0,q1]

[q0] [q1]
0
1 0

1

0,1

F 0 = {[q1], [q0, q1]}



 2.5 NFA’s with ε-Moves 

S  We may extend the model of  the NFA to include spontaneous  
transitions, that is, transitions on the empty input ε.  

S  Example. The transition diagram of  such an NFA is: 

 
S  The NFA accepts words consisting of  any number (including zero) of  0’s followed by 

any number of  1’s followed by any number of  2’s. Why? 

S  The answer is: The NFA accepts a string x if  there is a path labeled x from q0 to q2.  
But edges labeled εmay be included in the path, although ε does not appear explicitly in x.  

S  For example, x = 002 is accepted because there is a path q0, q0, q0, q1, q2, q2 with arcs 
labeled 0, 0, ε, ε, 2.  
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q0 q2

0 2

ε q1
ε

1

Start
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S  Definition.   A NFA with 𝜀-moves ( NFA𝜀)                       )                       
is a 5-tuple                        where: 
S      is a finite set of  states,     

S      is a finite input alphabet,  

S               is the initial state,          

S               is the set of  final states, and                 ☟ 

S      is the transition function, i.e.                                 

 That is,              is the set of  all states p such that there is                                    

 a transition labeled a  from q to p, where a is either 𝜀 or a symbol in     .  

S   Note:    can be viewed as a program of  NFA𝜀. Every NFA𝜀 has its own specific   .  . Every NFA𝜀 has its own specific   .   has its own specific   .  

 

Q

⌃

�
�(q, a)

q0 2 Q

F ✓ Q

⌃

(Q,⌃, �, q0, F )

� : Q⇥ (⌃ [ {"}) ! 2Q

� �
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S  Example (cont’d). The NFA𝜀 corresponding to the diagram  

 

 

     is                        , where: 
S    

S    

S    

S    

 

q0 q2

0 2

ε q1
ε

1

Start

(Q,⌃, �, q0, F )

Q = {q0, q1, q2}
⌃ = {0, 1, 2}

� =

0 1 2 ✏
q0 | {q0} ; ; {q1}
q1 | ; {q1} ; {q2}
q2 | ; ; {q2} ;

F = {q2}
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S  To describe the behavior of  such an NFA𝜀 on a string, we must 
extend 𝛿 so that it will be applicable to a state and a string.  

S  We will define a function                           so that             will 
be the set of  states p such that there is a path labeled x from q to p, 
perhaps including edges labeled 𝜀. 

S  In the definition of      we’ll need to compute the set of  all states 
reachable from the state q with 𝜀-transitions only : 𝜀-Closure(q).   

S  Example.                                           𝜀-Closure(q0) = {q0, q1, q2},  
                                                     𝜀-Closure(q1) = {q1, q2},  

                                                                      𝜀-Closure(q2) = {q2}. 

S  We extend the definition to sets: 𝜀-Closure(S)  
   

�̂ : Q⇥ ⌃⇤ ! 2Q �̂(q, x)

�̂

=
[

q2S

"-Closure(q)

q0 q2

0 2

ε q1
ε

1

Start
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S  The extended transition function     is defined inductively: 
S     

S  For  

   

 

S  But now, in general,                            . (Why?) 

S  We can also extend    and    to sets of states; if  R is a set of  states, then

 

�̂

�̂(q, ") = "-Closure(q)

w 2 ⌃⇤ and a 2 ⌃ we have

�̂(q, wa) = "-Closure(P )

�̂�

�̂(R, x) =
[

q2R

�̂(q, x)

�(R, a) =
[

q2R

�(q, a)

q pr
w

aw

w

a

a

a

P
ε-Closure(P)

�̂(q, a) 6= �(q, a)

where P = {p | 9r 2 �̂(q, w) : p 2 �(r, a)}
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S  Example (cont’d).     The NFA𝜀 with the transition diagram                                            

   has                                                           

     

     Suppose x = 01 is the input. What is   

S    

S     

 
 
S      

q0 q2

0 2

ε q1
ε

1

Start
Q = {q0, q1, q2} � =

0 1 2 ✏
q0 | {q0} ; ; {q1}
q1 | ; {q1} ; {q2}
q2 | ; ; {q2} ;

�̂(q0, ") = "-Closure(q0) = {q0, q1, q2}

�̂(q0, 0) = "-Closure(�(�̂(q0, "), 0)) = "-Closure(�({q0, q1, q2}, 0))

= "-Closure(�(q0, 0) [ �(q1, 0) [ �(q2, 0)) = "-Closure({q0} [ ; [ ;)
= "-Closure({q0}) = {q0, q1, q2}

�̂(q0, 01) = "-Closure(�(�̂(q0, 0), 1) = "-Closure(�({q0, q1, q2}, 1))

= "-Closure({q1}) = {q1, q2}

�̂(q0, 01)?

F = {q2}
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S  Definitions.  
S  A string x is said to be accepted by an NFA𝜀 

     if                 contains some           .            

 

S  The language accepted by an NFA𝜀                                                  is the set                                                    is the set  

                                                 
  
 

(Q,⌃, �, q0, F )M =

p 2 F

(Q,⌃, �, q0, F )M =

�̂(q0, x)

L(M) = {x 2 ⌃⇤ | �̂(q0, x) contains a state in F}



 2.6 Equivalence of NFAε’s and NFA’s 

S  The ability to make transitions on 𝜀 does not allow NFA𝜀s to 
accept non-regular sets.  

S  Why? We’ll see that NFAs can simulate NFA𝜀s.                    
That is, for every NFA𝜀 there is an equivalent NFA                
(accepting the same language as the NFA𝜀).  
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S  Theorem.  Let L be a set accepted by an NFA𝜀 M.                 
           Then there exists an NFA M'  that accepts L. 

S  Proof idea.  
S  We want M’  to simulate a move of  M for each pair of  state and 

input, (q,a). Since M can make also 𝜀-transitions during a move, 
M’ must be able to change to a state p if  there is a path in the 
diagram of  M from q to p labeled a, possibly with 𝜀-transitions. 
Hence, we want                             . 

      

 

�0(q, a) = �̂(q, a)
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S  Proof.  

S  Let                                     be an NFAε accepting L.  

S  We define a NFA,                                         as follows:  

S               , that is,                             for every             and            . 
   

S    
S  Note: M '  has no 𝜀-transitions  (it is an NFA). So we can use     instead of     .             

But    and    must still be distinguished (as they belong to an NFA𝜀). 

S  Lemma.                                     for              .                                                                         
 Proof: Induction on |x|. Exercise.  

S  Finally, we prove:                 contains a state of  F ' iff                 contains a state of  F.  
 Proof. Exercise.  

 

M = (Q,⌃, �, q0, F )

M 0 = (Q,⌃, �0, q0, F
0)

�0 = �̂ �0(q, a) = �̂(q, a) a 2 ⌃q 2 Q

F 0 =

(
F [ {q0} if "-Closure(q0) contains a state in F,

F otherwise.

�0 �̂0

�̂�

|x| > 1

�0(q0, x)
⇤

⇤

⇤
�0(q0, x) = �̂(q0, x)

�̂(q0, x)
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S  Example (cont’d). The NFA𝜀 M with the transition diagram                                            

   has: 

 

     The equivalent NFA is                                     , where:    

 
S    

 

S                                (because               is reachable from any state of  Q) 

The diagram of  the NFA M ’ is:                                

     

q0 q2

0 2

ε q1
ε

1

Start Q = {q0, q1, q2} � =

0 1 2 ✏
q0 | {q0} ; ; {q1}
q1 | ; {q1} ; {q2}
q2 | ; ; {q2} ;

M 0 = (Q,⌃, �0, q0, F
0)

�0(q, a) = �̂(q, a) =

0 1 2
q0 | {q0, q1, q2} {q1, q2} {q2}
q1 | ; {q1, q2} {q2}
q2 | ; ; {q2}

q2 2 F

q0 q2

0 2

q1

1

Start 0,1 1,2

0,1,2

F = {q2}

F 0 = {q0, q1, q2}



 2.7 Regular Expressions 

S  The languages accepted by finite automata are easily described 
by simple expressions called regular expressions.  

S  In this section we  
S  introduce operations of  concatenation and closure on languages, 

S  define regular expressions, and  

S  prove that the class of  languages accepted by finite automata is the 
same as the class of  languages describable by regular expressions. 
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S  Definition. Let 𝛴 be an alphabet. Let L1 and L2 be sets of  words 
from 𝛴*. The concatenation of  L1 and L2, denoted L1L2 , is the set 

                                                            
Words in L1L2 are formed by taking an x in L1 and following it by a y in L2, for all possible x, y.  

S  Definition. Let            .  Define L0 =       and Li = LLi-1 for i ⩾1.    
The Kleene closure (in short closure) of  L, denoted L*, is the set 

 

and the positive closure of  L, denoted L+, is the set 
 
 

L* is the set of  words that are constructed by concatenating any number of  words from L.         
L+ is the same, but the case of  zero words (whose concatenation is defined to be 𝜀), is excluded. 
Note: L+ contains 𝜀 iff L contains 𝜀. (Why? Exercise.) 

 

L⇤ =
1[

i=0

Li

L+ =
1[

i=1

Li

L1L2 = {xy |x 2 L1 and y 2 L2}

{"}L ✓ ⌃⇤
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S  Example.  

     Let L1 = {10, 1} and L2 = {011, 11}.  
S  Then: L1L2 = {10, 1}{011, 11} = {10011, 1011, 111}. (Note: 1011 = 1011.) 
S  Also:    L1* = {10, 1}*  

                  = L1
0 U L1

1 U L1
2 U …  

                   = {10, 1}0 U {10, 1}1 U {10, 1}2 U …  

                  = {𝜀} U {10,1} U {1010, 101, 110, 11} U …  
                   = {𝜀, 10,1, 1010, 101, 110, 11, …}  

S  And:    L1
+ = {10, 1}+ = {10,1, 1010, 101, 110, 11, …}   

S  Example.  

      Let 𝛴 be an alphabet. 𝛴* is the set of  all strings of  symbols in 𝛴. 
S  Let 𝛴 = {1}. Then 𝛴* = {𝜀, 1, 11, 111, 1111, …} 

S  Let 𝛴 = {0,1}. Then 𝛴* = {𝜀,0,1,00,01,10,11,000,001,010,011,100,101,110,111,…} 
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S  Definition. Let 𝛴 be alphabet. The regular expressions (r.e.) over 𝛴  
(and the sets that they denote) are defined inductively as follows:  
1)      is a r.e.; it denotes the empty set,   ; 

2)  𝜀  is a r.e.; it denotes the set {𝜀}; 

3)  For each a ∊ 𝛴, a is a r.e.; it denotes the set {a}; 

4)  If  r and s are r.e.s denoting languages R and S, respectively, then  
a)  (r + s)  is a r.e.; it denotes the set  R U S ; (union of  R and S) 

b)    (rs)    is a r.e.; it denotes the set  RS ;      (concatenation of  R and S) 

c)    (r*)    is a r.e.; it denotes the set  R*.      (Kleene closure of  R) 

 
Note. The basic r.e.s are defined explicitly (1,2,3). All the other r.e.s are defined 
inductively (4a,b,c). Definitions of  this kind are called inductive. Properties of  
the defined objects are often proved by induction.  

; ;
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S  Conventions.  

S  We can omit many parentheses  
S  if  we assume that * has higher precedence than concatenation 

and concatenation has higher higher precedence than +.  

 Example. ((0(1*)) + 0) may be written 01* + 0.  

S  if  we abbreviate the expression rr* by r+.  

S  When  
S  necessary to distinguish between a regular expression r and the 

language denoted by r, we use L(r) for the latter;  

S  no confusion is possible we use r for both the regular expression 
and the language denoted by the regular expression. 
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S  Examples.   
S  00 is a regular expression that denotes the set {00}. 

S  0* denotes the set of  strings of  any number of  0s  

S  0+ denotes the set of  strings of  at least one 0 

S  0*1* denotes the set of  strings of  any number of  0s followed by any number of  1s. 

S  0+1+ denotes the set of  strings with at least one 0 followed by at least one 1. 

S  (0+1)* denotes the set of  all strings of  0s and 1s. 

S  (0+1)*11 denotes the set of strings of  0’s and 1’s ending in 11.  

S  (0+1)*00(0+1)* denotes the set of  strings of  0s and 1s with at least two consecutive 0s. 

S  (1+10)* denotes the set of strings of  0s and 1s beginning with 1 and not containing 00. 
(Proof: Induction on i that strings denoted by (1+10)i  begin with 1 and have no 00.) 

S  (0 + 𝜀)(1+10)* denotes the set of  all strings of 0s and 1s whatsoever containing no 00 

S  0*1*2* strings of  any num. of  0’s followed by any num. of  1s followed by any num. of  2s. 

S  00*11*22* strings of  at least one 0 followed by at least one 1 followed by at least one 2.    
(We may use the shorthand 0+1+2+ for 00*11*22*) 



 2.8 Equivalence of                                
Finite Automata and Regular Expressions 

S  We will show that the languages accepted by finite automata are 
precisely the languages denoted by regular expressions.              
(This is why finite automaton languages are called regular sets.)  

S  How? In two steps, by showing that  

S  For every regular expression r there is a NFAℇ accepting the language L(r).      
(But NFAℇs are equivalent to NFAs and to DFAs, so they all accept the same class of  languages.) 

S  For every DFA M there is a regular expression denoting the language L(M). 

S  So, the four language-defining ways (DFA, NFA, NFAℇ, regular 
expression) define the same class of  languages, the regular sets. 
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S  Theorem.  Let r be an arbitrary regular expression.                                       
            Then there exists an NFA𝜀 that accepts L(r). 

S  Proof idea. We use induction on the number of  operators in r                
to show that, for any r.e. r, there exists an NFA𝜀 M = (Q, 𝛴, 𝛿, q0, { f0 })  M = (Q, 𝛴, 𝛿, q0, { f0 }) 
with one final state and no transitions out of  it, such that L(M) = L(r). 
 

Note. NFA𝜀s with just one final state will enable us to easily combine them s with just one final state will enable us to easily combine them 
into larger NFA𝜀s. No generality will be lost in this way. (Why? Show how s. No generality will be lost in this way. (Why? Show how 
an arbitrary general NFA can be transformed into such equivalent NFA𝜀.) .) 
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S  Proof.  
S  Let P(n) ≣ ‘If  r is a r.e. with n operators, then there is a NFA𝜀 M such that L(M) = L(r).’  M such that L(M) = L(r).’ 
S  We prove P(n) by induction on n. 
S  Basis [check P(0)]. If  n=0, then r is either   , 𝜀, or a (a ∊ 𝛴). The associated NFA𝜀s are: 

 

S  Inductive hypothesis  [suppose P(n) holds for all n ⩽ k -1 (so k ⩾1)] 
S  Inductive step [show that then P(n) holds for all n ⩽ k]  

        Let r have k operators. There are three cases depending on the form of  r : 
S  r = r1+r2 . Each of  r1 ,r2  has ⩽ k -1 operators. By ind.hyp. there are NFA𝜀s M1, M2 such s M1, M2 such 

that L(M1) = L(r1) and L(M2) = L(r2). The NFA𝜀 M corresponding to r is in Fig. (a).  M corresponding to r is in Fig. (a). 

S  r = r1r2 . Each of  r1, r2 has ⩽ k -1 operators. By ind.hyp. there are NFA𝜀s M1, M2 such     s M1, M2 such     
that L(M1) = L(r1) and L(M2) = L(r2). The NFA𝜀 M corresponding to r is in Fig. (b).  M corresponding to r is in Fig. (b). 

S  r = r1*.  Here, r1 has ⩽ k -1 operators. By ind.hyp there is an NFA𝜀 M1 such                          M1 such                         
that L(M1) = L(r1). The NFA𝜀 M corresponding to r is in Fig. (c).  M corresponding to r is in Fig. (c). 

          ☐ 

 

;

q2 f2
ε εM2

q1 f1ε εM1
f0q0

Start
q2 f2M2

q1 f1M1
Start ε

ε

q1 f1
ε ε

M1
f0q0

Start
ε

(a) (b) (c)

q0 f0
Start q0

aStart f0q0
εStart f0
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S  Example.   
S  Vaje. 
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S  Theorem.  Let M be an arbitrary DFA.                                             
           There exists a regular expression that denotes L(M). 

S  Proof idea.  
S  We view L(M) as a union of  sets (finitely many) .  

S  Each of  the sets corresponds to a final state of  M and contains all 
the words that take M from the initial state to this final state.  

S  We then define these sets inductively (bottom up, by simpler sets). 
In parallel we construct to each such set the corresponding 
regular expression.  
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S  Proof.  
S  Let be given a DFA M = ({q1, …, qn}, 𝛴, 𝛿, q1, F ). 
S  By definition: L(M) = ‘set of  all words that take M from initial q1 to any final qj’  
S  Let Rn

1j ≣ ‘set of  all words that take M from q1 to qj’.  Then  L(M) =           . 
S  Note: if  we knew how to construct a r.e.       for Rn

1j , then r.e.         would denote L(M).  
S  Let Rk

ij ≣ ‘set of  all words taking M from qi to qj  and crossing no state indexed >k.’  
S  Note: Rk

ij  can be constructed inductively:                                                                     (*) 

                                                                                                                                                                 (**) 

                                                                                                                                                                                            

S   Question. Can we construct r.e.       (for      ) when we construct      ?  
S   Answer. Yes; the constructive proof  of  the next proposition shows how we do this. 

S  Proposition: P(k) ≣ ‘For each i,j,k there is a r.e.      denoting       .’ 
         Proof (induction on k).       

         Basis [check P(0)]. (**) suggests that       is denoted by      = a1+…+ap  or       = a1+…+ap + 𝜀. 
          Ind.hyp.[assume P(k-1) holds]. So, for each i,j,k there is a r.e.         denoting       .    

          Ind.step [does P(k-1) ⇒P(k) hold?] 
                (*) and ind.hyp. tell us that       is denoted by the r.e.                                                   . 
               ☐ 

☐ 

 

Rk
ij = Rk�1

ik (Rk�1
kk )⇤Rk�1

kj [Rk�1
ij

R0
i,j =

(
{a | �(qi, a) = qj} if i 6= j

{a | �(qi, a) = qj} [ {"} if i = j

rkij Rk
ij

[

qj2F

Rn
1j

R0
ij r0ij r0ij

rk�1
ij Rk�1

ij

Rk
ij rkij = rk�1

ik (rk�1
kk )⇤rk�1

kj + rk�1
ij

Rk
ij

Rk
ij

rkij

rn1j

nX

j=1

rn1j
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S  Example.   
S  Vaje. 



 2.9 Applications of Finite Automata 

S  There are a many software design problems that are simplified by 
automatic conversion of  regular expressions to efficient 
simulators of  the corresponding DFAs. 

S  Such software design problems include the design of: 
S  Lexical analyzers 

S  Text editors 

S  Data compressors 

S  See also Google: Application of  Finite Automata 
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S  Lexical analyzers.  

S  Lexical analyzer is a program that performs lexical analysis. Lexical 
analysis is the process of  converting a sequence of  characters (e.g. 
program, web page, …) into a sequence of  language tokens.                   
A language token is a string with an identified meaning (e.g. keyword, 
identifier, literal, numeric constant, …).  

S  Language tokens are usually expressible as regular expressions. 

S  Examples.  
S  An ALGOL identifier is an upper- or lower-case letter followed by any sequence of  letters 

and digits, with no limit on length. Such identifiers are expressed as (letter)(letter+digit)*, 
where letter = (A+B+…+Z+a+b+…+z) and digit = (0+1+…+9). 

S  A FORTRAN indentifier has length limit 6 and letters restricted to upper-case and $. 
These identifiers are expressed as (letter)(𝜀+letter+digit)5 where letter = ($+A+B+…+Z). 

S  A SNOBOL arithmetic constant is expressed as  (𝜀 + -)(digit + (. digit* + 𝜀) + . digit+). 
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S  A lexical-analyzer generator takes as input a sequence of  r.e.s (describing 
various tokens) and produces a single DFA recognizing any token. 

S  How? 
S  It performs conversions  {given r.e.s} → NFA𝜀 → DFA (rather then via NFA).    → DFA (rather then via NFA).   

S  Each final state of  the DFA indicates the particular token found during lexical analysis. 

S  The 𝛿 of  the DFA is encoded (to take less space than a 2D-array).  

S  The resulting lexical analyzer is a fixed program that interprets (simulates) the DFA. 

S  This lexical analyzer may then be used as a module in a compiler.  
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S  Text editors.  

S  Certain text editors and similar programs offer commands that may 
accept r.e.s as parameters.  

S   Examples. 
S  In UNIX text editor, the command s/bbb*/b substitutes a single blank b for the first 

string of  two or more blanks found in the current line of  text. 

S  Generally, given a word w and a r.e. r,  the command s/r/w substitutes w for the first 
string that matches r in the current line of  text. (More precisely, the command 
substitutes w for the first occurrence of  any word from L(r) in the current text line.) 
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S  Data compressors.  

S  …. 

S   Examples. 
S  … 



2.10 Dictionary 

token jezikovni simbol finite automaton končni avtomat regular expression regularni izraz finite 
state system končni sistem state stanje switching circuit preklopno vezje Turing machine Turingov 
stroj deterministic finite automaton deterministnični končni avtomat state transition prehod stanja 
input symbol vhodni simbol input alphabet vhodna abeceda initial state začetno stanje final state 
končno stanje accepting state sprejemajoče stanje to accept sprejeti transition diagram diagram 
prehodov transition function funkcija prehodov control unit nadzorna enota tape trak move poteza  
window okno  extended transition function razširjena funkcija prehodov regular set regularna 
množica nondeterministic finite automaton nedeterministični končni avtomat execution tree drevo 
izvajanja ℇ-move tihi prehod  concatenation stik closure zaprtje Kleene closure Kleenovo zaprtje 
positive closure pozitivno zaprtje lexical analysis leksikalna analiza lexical analyzer leksikalni 
analizator language token jezikovni simbol lexical-analyzer generator generator leksikalnih 
analizatorjev text editor urejevalnik data compressor  
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3  
Properties of Regular Sets 
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S  Questions about regular sets.  

S  There are many questions we can ask about regular sets; for example:  
S  Given a language L specified in some way, is L a regular set? 
S  Given regular expressions r1, r2, are the regular sets L(r1), L(r2) equal? 
S  Given a FA M, find the minimal equivalent FA (with fewest states). 
S  ... 

S  We will provide tools for answering such questions about regular sets.           
In particular, we will provide: 
S  Pumping lemma   (for proving that certain languages are not regular) 

S  Closure properties   (for proving that certain languages are regular) 

S  Decision algorithms  (for answering certain questions about r.e.s and FAs) 

S  Myhill-Nerode theorem   (for proving that certain languages are not regular) 



3.1 The Pumping Lemma for Regular Sets 

S  The pumping lemma for regular sets is a powerful tool  
S  for proving that certain languages are not regular 

S  for proving that languages of  particular FAs are (in)finite  
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S  Pumping Lemma (for regular sets). Let L be a regular set.  Then there 
is a constant n (depending only on L) such that the following holds:        
if  z is any word such that      

 z ∊ L and |z|⩾ n,             
then there exist words u, v, w such that     

  z = uvw,       
 |uv|⩽ n,       
 |v|⩾ 1,   and                                                                
 ∀i ⩾ 0: uv 

iw ∊ L.     
 In addition, n is at most the number of  states of  the smallest FA accepting L. 

S  Informally.  Given any sufficiently long word z accepted by an FA, we can find a subword v near the beginning of  z 
that may be repeated ("pumped”) as many times as we like but the resulting word will still be accepted by the FA. 

S  Formally. The Pumping Lemma is succinctly stated as follows: (we will need this!) 

L regular =) (9n)(8z)
h
z2L ^ |z|�n ) (9u, v, w)[z=uvw ^ |uv|n ^ |v|�1 ^ (8i � 0)uviw2L]

i

vu w

vu wv v

z

uv 

i
 w
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S  Proof.  
S  Let L be a regular set. 

        So there is a DFA M = (Q,𝛴,𝛿,q0,F )  accepting L.      
        Let n :=|Q|. 

S  Let z = a1…am  (m ⩾ n) be a word in L. 
S  Start M on input z. While reading z, M enters various states. 
       Denote by       the state of M after reading a1…ai . 
       When entire z = a1…am  is read, M has entered m+1 states                              .  
S  Note: at least two of  these states, say      ,       (0⩽j<k⩽n), must be equal (as|Q|<m+1). 

       So the path                                        has a loop                               labeled aj+1…ak . 

S  If  we take u := a1…aj , v := aj+1…ak  and w := ak+1…am , we can prove that 

S  z = uvw ; 

S  |uv|⩽ n ; 
S  1 ⩽|v|, and 
S  for all i ⩾ 0, uviw ∊ L. 

☐ 

q`i
q0, q`1 , . . . , q`m

q`j q`k
q0!q`1 ! . . .!q`m q`j ! . . .!q`k
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S  Applications of the pumping lemma.  

S  The lemma is useful in proving that certain languages are not regular.        
The method of  proving this is derived from the formally written lemma.     
How? 
S  Formally, the pumping lemma is written as 

 
S  Let us focus on those z,u,v,w’s for which P and Q are true; let us fix n to the constant whose 

existence is assured by the lemma. For such ‘good’ n,z,u,v,w’s we can reduce the formula to 

 

S  Recall from logic: A ⇒ B ≣ ¬B ⇒ ¬A; and ¬(∀x)F(x) ≣ (∃x)¬F(x); and ¬(∃x)F(x) ≣ (∀x)¬F(x).               
If  we apply these equivalences to the above formula we obtain 

                                                                 

S  Notice: If  we prove, for a given L, that the left-hand side of  ‘⟹’ holds, then L is not regular.               
This is the basis of  the following method of  proving that a language L is not regular. 

L regular =) (9n)(8z)
h
z2L ^ |z|�n| {z }

P

) (9u, v, w)[z=uvw ^ |uv|n ^ |v|�1| {z }
Q

^(8i � 0)uviw2L]
i

L regular =) (8z)(9u, v, w)(8i � 0)uviw2L (where n, z, u, v, w are ’good’)

(9z)(8u, v, w)(9i � 0)uviw 62L =) L not regular (where n, z, u, v, w are ’good’)
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S  The method.  

S  Suppose that we want to prove that a given language L is not regular.               
To do this, we try to prove that the following holds for L: 

To prove this we: 
a)  Pick an n and declare it to be the constant mentioned in the lemma. 

b)  Select a ‘good’ word z  (i.e. such that z ∊ L, |z|⩾ n) 

c)  Find all possible partitions of  z into ‘good’ u,v,w  (i.e. such that z = uvw ,|uv|⩽ n,|v|⩾1) 

d)  Try to prove:                      
                  for every ‘good’ partition u,v,w     
                          there exists an i ⩾ 0     
                           for which uviw ∉ L. 

If  d) succeeds, then L is not regular. 

         

(9z)(8u, v, w)(9i � 0)uviw 62L (where n, z, u, v, w are ’good’)
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S  Example.   
S  Let L =                    . We want to prove that L is not regular. 
S  We use the described method.  

S  Let n  be the constant from the lemma.  
S  Select z =     .  (z is ‘good’ because z ∊ L and|z|= n2 ⩾ n.) 
S  There are many possible partitions of  z into ‘good’ u,v,w  (i.e. z = uvw,|uv|⩽ n,|v|⩾1).  
       Note: for every ‘good’ partition u,v,w we have 1⩽|v|⩽ n. (Why?) 
S  Let u,v,w be an arbitrary ‘good’ partition of  z. We’ll show that uv2w ∉ L.  

S  Compute:  |uv2w| = |u|+ 2|v|+|w| = |z|+|v| = n2 +|v|.   
S  But 1 ⩽ |v| ⩽ n.  
S  So n2 +1 ⩽|uv2w| ⩽ n2 +n,  which is < (n+1)2. 
S  Hence n2  <|uv2w| < (n+1)2. 
       This means that|uv2w| is not a perfect square; consequently  uv2w ∉ L. 
S  We proved that, for any ‘good’ u,v,w, there exists an i (=2) such that uviw ∉ L. 

S  According to our method, this implies that L is not regular. 

S  There exist non-regular languages! For these we will need a model of  
computation that will be more powerful than FA.  

{0i
2

| i 2 N}

0n
2
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S  Example.   
S  Let L =                    .      .   We want to prove that L is not regular. 
S  We use the described method. 

S  Let n  be the constant from the lemma.  
S  Select z =    , where p is a prime. (Obviously z is ‘good’.) 
S  There are many possible partitions of  z into ‘good’ u,v,w  (i.e. z = uvw,|uv|⩽ n,|v|⩾1).  

    For every ‘good’ partition u,v,w we have 1⩽|v|⩽ n. 
S  Let u,v,w be an arbitrary ‘good’ partition of  z. We’ll show that uv 

p+1w ∉ L.  
S  Compute|uv 

p+1w| = |u|+ (p+1)|v|+|w|=|z|+ p|v|= p + p|v| = p(1+|v|).   
S  This is not a prime (because 1+|v| ⩾ 2). 
S  Since|uv p+1w| is not a prime, we have uv 

p+1w ∉ L ! 
S  We proved: for every ‘good’ u,v,w, there exists an i (=p+1) such that uv 

iw ∉ L. 

S  According to our method, this implies that L is not regular.  

S  There is no FA accepting this L; and L cannot be denoted by a regular expression. 

{0p | p is a prime}

0p



3.2 Closure Properties of Regular Sets 

S  Some operations on languages preserve regular sets (in the sense that the 
operations applied to regular sets result in regular sets). 

S  We say that the class of  regular sets is closed under an operation if  the 
operation applied to regular sets results in a regular set.   

S  If  the class of  regular sets is closed under a particular operation, we call that 
fact closure property of  the class of  regular sets. 

S  We are particularly interested in effective closure properties of  the class of  
regular sets. For such properties, given descriptors for regular sets, there is an 
algorithm to construct a descriptor for the regular set that results by applying 
the operation to these regular sets. 
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S  Closure under union, concatenation, and Kleene closure.  

S  Theorem.  The class of  regular sets is closed under union,  
           concatenation and Kleene closure.  

 

Remark. The theorem states that the union L1 U L2 and concatenation L1L2  of  regular sets L1, L2  is a regular set, 

and the Kleene closure L* of  a regular set L is a regular set. 

S  Proof. The theorem follows directly from the definiton of  regular sets.  

S  Let L1 and L2 be regular sets. Is L1 U L2 a regular set?                                            
Since L1,L2 are regular, there are r.e.’s r1,r2 such that L1 = L(r1 ) and L2 = L(r2).  
(Recall: r1,r2 can be effectively constructed from the corresponding FA’s M1,M2.)     
Now construct r.e. r1+r2. But this r.e. denotes L1 U L2. So L1 U L2 is regular.  

S  Similarly we prove effective closure for concatenation and Kleene closure (exercise). 

⧠         
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S  Closure under complementation and intersection.  

S  Theorem.  The class of  regular sets is closed under    
           complementation and intersection.  

 

Remark. The theorem states that the complement  𝛴* – L of  a regular set L is a regular set,                                      

and the intersection L1 ⋂  L2  of  regular sets L1, L2  is a regular set. 

S  Proof.  
S  (complementation) Let L be a regular set.  Is 𝛴* – L also a regular set?                                               

Since L is regular, there is a DFA M = (Q,𝛴,𝛿,q0,F ) such that L = L(M). We will construct a 
new DFA M’ for 𝛴* – L. Idea: M’ should have complemented final states. So, M’ = (Q’,𝛴,𝛿’,q0’,F’ ) 
where Q’ := Q, 𝛴’ := 𝛴, 𝛿’ := 𝛿, q0’ := q0, and F’ := Q – F.  So M’ accepts x iff  M doesn’t accept x. 
This means that M’ accepts 𝛴*– L(M) = 𝛴*– L. Consequently, 𝛴* – L is a regular set.  

S  (intersection) Let L1,L2 be regular sets. Is L1 ⋂ L2 a regular set too?                                                 
We know that                             , where line denotes complementation (with respect to an 
alphabet that includes the alphabets of  L1, L2).  Now, since the class of  r.e. sets is closed under 
complementation and union, it is also closed under intersection.  

⧠ 

L1 \ L2 = L1 [ L2
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S  Closure under substitution and homomorphism.  

S  Definition. Let 𝛴, 𝛥 be alphabets. A substitution is a function f that maps each symbol 
of  𝛴 to a language overΔ; i.e. f (a) ⊆ 𝛥* for each a ∊𝛴. We extend f  to words in 𝛴* by 
defining  f (𝜀) = 𝜀 and f (wa) = f (w) f (a);  and then to languages by defining f  (L) =          .  

S  Question. The definition of  substitution says nothing about the kind of  the set L and the sets f (a), a ∊𝛴.       

What if  we additionally require that L and all f  (a), a ∊𝛴  are regular? Is then f  (L) regular too? 

S  Example. Let 𝛴={0,1}, 𝛥={a,b} and f  a substitution defined by f  (0)=a, f  (1)=b*. Both f (a), f (b) are regular.                                              
Let x = 010. Then f (x) = f (010) = … = f (0) f (1) f (0) = ab*a.               

Let L be regular set denoted by 0*(0+1)1*; then f  (L) =  a*(a+b*)(b*)*. This is a regular set. (Prove.)  

S  Definition. A homomorphism is a substitution h such that h(a) contains a single word 
for each a ∊ 𝛴. We extend h to words and languages as in the case of  the substitution. 
The inverse homomorphic image of  a word w is the set h 

-1(w) = {x|h(x) = w} and of  a 
language L is the set h -1(L) = {x|h(x) ∊ L}. 

S  Example. Let h be a homomorphism defined by h(0) = aa  and h(1) = aba.                                       
Let x = 010. Then h(x) = h(010) = aaabaaa;  and h -1(aaabaaa) = {010}. (Why? Only 010 maps to aaabaaa.)         
Let L1 = (01)*. Then h(L1) = (aaaba)*. Let L2= (ab+ba)*a. Then h -1(L2) = {x|h(x) ∊(ab+ba)*a} ={1}. (Why?) 

[

x2L

f(x)
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S  Theorem.  The class of  regular sets is closed under substitution,  
           homomorphism and inverse homomorphism.  

 

Remark. Let f  be a substitution and h a homomorphism.                                                                                                          
If  L and all f (a) are regular, then also f (L) is regular;  and if  L is regular, h (L) and h-1(L) are regular too. 

S  Proof idea.  
S  (substitution) Let L and all f  (a), a ∊ 𝛴 be regular sets. Let L be denoted by r.e. r and f  (a) by ra. 

Idea: replace each occurrence of  a in r  by ra   . Then prove that the resulting r.e. r ’ denotes f  (L). 
(Use induction on the number of  operators in r ’.) 

S  (homomorphism) Closure under homomorphism follows directly from closure under substitution 
(because every homomorphism is by definition a (special) substitution). 

S  (inverse homomorphism) Let L be regular and h a homomorphism. We want to prove that h -1(L) is 
regular. Let M be DFA accepting L. We want to construct a DFA M’ such that M’ accepts h 

-1(L) 
iff  M accepts L. Idea:  construct M’ so that when M’  reads a ∊ 𝛥,  it simulates M  on h 

-1(L). 

⧠  

S   Homomorphisms and inverse homomorphisms often simplify proofs. 
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S  Closure under quotient.  

S  Definition. The quotient of  languages L1 and L2 is the set L1/L2 
defined by  
Informally, L1/L2  contains prefixes of  words in L1 whose corresponding suffixes are words in L2. 

S  Exercise. Prove or disprove: (L1/L2 )L2 = L1 .  

S  Example. To do. 

S  Question. The definition of  L1/L2 tells nothing about the kind of  the sets L1, L2.                       
What if  L1, L2  are regular? Is then L1/L2 regular too?                                                                
What if L1 is regular and L2 arbitrary? Is then L1/L2 still regular?        
Here is the answer to both questions. 

S  Theorem.  The class of  regular sets is closed under quotient  
            with arbitrary sets.  

S  Proof idea.      To do, or not to do, that is the question.      ⧠ 

 

L1/L2 = {x | 9y 2 L2 : xy 2 L1}.



3.3 Decision Algorithms for Regular Sets 

S  We need algorithms to answer various questions about regular sets. These 
questions include:  
S  Is a given regular language L empty?  
S  Is it finite?  
S  Are two given FAs equivalent ? 

S  These questions ask for the answer that is either YES or NO. Problems that 
ask for YES/NO answers are called decision problems, and algorithms that 
solve decision problems are called decision algorithms. 

S  The inputs to decision algorithms will be representations of  regular sets.   
We will assume that regular sets are represented by FAs.                                   
(We could also represent regular sets by r.e.’s, as there are algorithmic translations between r.e.’s and FAs.) 
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S  Emptiness and finiteness of regular sets.  
 

Decision algorithms for the questions “Is a regular language L empty?’’ and 
“Is a regular language L finite?’’ can be founded on the following theorem. 

S  Theorem. The set L(M) accepted by a FA M with n states is: 

1)  nonempty  iff   M accepts a word of  length ℓ, where ℓ < n. 

2)  infinite      iff   M accepts a word of  length ℓ, where n ⩽ ℓ < 2n. 

S  Algorithms (naïve). The obvious procedure to decide the problem 

S   ‘’Is L(M) nonempty?’’  is:    ”Check if  any word of  length  ℓ < n  is in L(M).”  

S   “Is L(M) infinite?”       is:    ”Check if  any word of  length n ⩽ ℓ < 2n  is in L(M).” 

Both algorithms systematically generate all words of  appropriate lengths ℓ and, for 
each generated word, check whether M accepts that word. Both procedures eventually 
halt (prove) and return a YES or NO.  

Exercise. How many words must be generated and checked in the worst case? 
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S  Equivalence of finite automata.  
 

S  Definition. Two finite automata M1 and M2 are said to be equivalent   
if  they accept the same language, i.e. if  L(M1) = L(M2). 

S  Theorem. There exists an algorithm to decide whether two FAs are equivalent. 
S  Proof. Let M1 and M2  be FAs and L1 = L(M1) and L2 = L(M2).              

Now define a language L3  as follows:    

              L3 =                                     .                                       

L3 is regular (due to closure properties) and therefore accepted by some FA M3.                           
This M3 is important because we can show (Exercise) that                                                  

          M3 accepts a word  iff    L1 ⧧ L2.                
So we must check whether M3 accepts any word, i.e. whether L3 is non-empty (see previous slide).  

⧠ 

 

 

(L1 \ L2) [ (L1 \ L2)



3.4 The Myhill-Nerode Theorem         
and Minimization of FA 

S  Let L be a regular set accepted by a DFA M. There are infinitely 
many FAs equivalent to M. But they may greatly differ in their 
components Q, 𝛿, F.  

S  Questions:  
S  Is there a minimum state DFA, i.e. one that has, among all DFAs 

equivalent to M, the smallest number of  states ?           
S  If  there is, can we algorithmically construct it?  

S  The answer is YES.  To see this we need the Myhill-Nerode Theorem. 
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S  Before we state the Myhill-Nerode Theorem we need some definitions. 

S  Definition. Let L⊆𝛴*  be an arbitrary language. Define a relation RL on 𝛴* by 
   
S  Remarks. Two words x,y ∊ 𝛴* are in relation RL iff  their arbitrary extensions xz,yz are either both 

in L or both outside L. Now, RL is an equivalence relation (Exercise). So, RL partitions L into 
equivalence classes. The number of  these is called the index of  RL and it can be finite or infinite.   
(Example. If  each x ∊ 𝛴* is in relation RL with no other y, then the index of  RL is infinite.) 

S  Definition. Let M = (Q,𝛴,𝛿,q0,F ) be a DFA. Define a relation RM on 𝛴* by  

     
S  Remarks. Two words x,y∊𝛴* are in relation RM iff  they take M from q0 to the same state q.             

RM is equivalence relation (Exercise). It partitions 𝛴* into equivalence classes, one for each state q 
reachable from q0. The number of  the classes is the index of  RM . The index of  RM is finite (since Q 
is finite). Note that L(M) is the union of  those equivalence classes (since each class corresponds 
to a final state q ∊ F. We can prove (Exercise) that RM  is right invariant, i.e. that  

xRMy i↵ �(q0, x) = �(q0, y).

xRMy ) 8z2⌃⇤ :xzRMyz

xRLy i↵ 8z2⌃⇤ : xz 2 L , yz 2 L.
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S  The next theorem tells us that the defined notions are tightly 
connected  if  L is a regular set.  

S  Theorem. (Myhill-Nerode) The following statements are equivalent: 
1)  L ⊆ 𝛴* is a regular set; 

2)  RL  is of  finite index; 

3)  L is the union of  some of  the equivalence classes of  a right invariant equivalence 
relation of  finite index. 

S  Remarks. The theorem is useful when, for a given L, we have proved one of  the items 1,2,3. 
Then, by Myhill-Nerode Theorem, the other two items hold too, and so reveal additional 
information about L. 

S  Example. If  we have proved (3)  for some ‘right invariant equivalence relation of  finite 
index’, then (1) tells us that L is regular.  

S  Example. If  have proved (1) that some DFA M accepts L, then (3) tells us that there is a 
‘right invariant equivalence relation of  finite index’ such that L  is the union of  some of  
its equivalence classes. (Moreover, we know that this relation is RM ). 
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S  A consequence of  the Myhill-Nerode Theorem is that for every 
regular set there is an essentially unique minimum state DFA.  

S  Theorem. (minimum state DFA) The minimum state DFA accepting 
a regular set L is unique up to an isomorphism (renaming of  the states). 

S  Proof idea.  
S  Let L be regular. By Myhill-Nerode Theorem there are finite number of  equivalence classes of  RL.  

Denote by [x] the eq. class containing x ∊ 𝛴*. So {[x]|x ∊ 𝛴*} is the set of  all eq. classes of  RL. 
S  Construct a DFA M  =  (Q, 𝛴, 𝛿, q0, F ) as follows:  

S  Q  := {[x]|x ∊ 𝛴*};     (that is, each state will correspond to an eq. class of RL ) 
S  𝛿 ([x],a) := [xa], for a ∊ 𝛴; 
S  q0  := [𝜀];  
S  F  := {[x]|x ∊ L}. 

S   Note: 𝛿(q0 ,w) = 𝛿(q0 , a1a2…an) = [a1a2…an] = [w].  Thus, M accepts w  iff  [w] ∊ F.                  
This means that M accepts L. 

S  It follows from the proof of  Myhill-Nerode Theorem that this M is the minimum state DFA for L. 
⧠ 



3.5 Dictionary 

regular set regularna množica  pumping lemma lema o napihovanju closure property zaprtost closed under an 
operation zaprt za operacijo effective efektiven substitution substitucija homomorphism homomorfizem inverse 
homomorphic image inverzna homomorfna slika quotient kvocient decision problem odločitveni problem decision 
algorithm odločitveni algoritem, odločevalnik representation predstavitev minimum state FA najmanjši končni 
avtomat right invariant relation desno invariantna relacija 
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4.1 Introduction 

S  We will introduce context-free grammars (CFG) and the 
languages they describe—the context-free languages (CFL).  

S  The CFLs are of  great practical importance, for example in  
S  defining programming languages,  
S  formalizing the notion of  parsing,  
S  simplifying translation of  programming languages, and in  

S  other string-processing applications. 

S  Example. CFGs are useful for describing 
S  arithmetic expressions (with arbitrary nesting of  balanced parentheses),  
S  block structure of  programs in programming languages (e.g. matching of  {'s and }'s in Java). 

These aspects of  programming languages cannot be represented by regular expressions. 
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S  Informally, a CFG is a finite set variables (each of  which implicitly represents a language 

that can be generated from the variable by the CFG).  Variables are defined recursively in 
terms of  variables and terminals (primitive symbols, which are not variables). The rules 
that are used to define variables are called productions. 

S  Example. A CFG that defines (the structure of) arithmetic expressions consisting of  operators +, ∗, 
parentheses (,) , and numeric operands (all represented by terminal id) has four productions:  

S  (1)     〈expression〉 → 〈expression〉 + 〈expression〉 

S  (2)     〈expression〉 → 〈expression〉 ∗ 〈expression〉 

S  (3)     〈expression〉 → (〈expression〉) 

S  (4)     〈expression〉 → id 
  
S  There is just one variable, 〈expression〉;   
S  The terminals are  + , ∗ , ( , ) , id;  
S  The productions are to be understood as follows: 

S  (1) and (2) tell that an expression can be composed of  two expressions connected by + or ∗;  

S  (3) tells that an expression can be another expression surrounded by parentheses;  
S  (4) tells that any single operand id is already an expression. 

S  The variable 〈expression〉 implicitly represents the generated language of  all such arithmetic expressions. 
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S  By applying productions repeatedly we derive more complex expressions. 
The symbol ⇒ denotes a direct derivation, i.e. substitution of  a variable by the 
body (i.e. right-hand side) of  a production for that variable. 

S  Example (cont’d). Here is a derivation of  the expression (id + id) ∗ id in the example CFG: 

 

 〈expression〉 ⇒ 〈expression〉 ∗ 〈expression〉               … by (2) 

                       ⇒ (〈expression〉) ∗ 〈expression〉             … by (3) 

                       ⇒ (〈expression〉) ∗ id                               … by (4) 

                       ⇒ (〈expression〉 + 〈expression〉) ∗ id     … by (1) 

                       ⇒ (〈expression〉 + id) ∗ id                        … by (4) 

                       ⇒ (id + id) ∗ id                                          … by (4) 

 
So the arithmetic expression (id + id) ∗ id has been derived from the variable <expression>. 
That is, (id + id) ∗ id is in the language that can be generated from the variable  <expression>. 



4.2 Context-Free  
Grammars and Languages 

S  First we give a formal definition of  the context-free grammar, CFG. 

S  Definition. A context-free grammar (CFG) is a 4-tuple       
where: 

S  V  is a finite set of  variables,     

S  T  is a finite set of  terminals,  

S  P  is a finite set of  productions,     
  each of  which is of  the form A → 𝛼,    
  where A ∊ V and 𝛼 is a word from the language (V U T )*; 

S  S  is a special variable called the start symbol.   
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G = (V, T, P, S)
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S  Conventions. To improve readability, we usually use:  
S  A,B,C,D,E,S                              … for variables;  

S  a,b,c,d,e,0,1,2,3,4,5,6,7,8,9,boldstrings                        … for terminals;  

S  X,Y,Z    … for symbols that may represent either variables or terminals; 

S  u,v,w,x,y,z              … for strings of terminals;  

S  𝛼,𝛽,𝛾        … for strings of variables and terminals. 

S  If    A → 𝛼1, A → 𝛼2, …, A → 𝛼k    are productions for variable A,        
we can express them by       

        A → |𝛼1|𝛼2|…|𝛼k   (vertical bar is read ‘or’). 

S  Example. The grammar from the previous example is now E → E + E | E  ∗ E | (E) | id 
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S  Before we define the language generated by a CFG G  = (V,T,P,S),            
we need a few definitions. 

 
Definitions.  Let A → 𝛽 be a production and 𝛼,𝛾 ∊ (V U T )* arbitrary strings.        

S  We say that we apply A → 𝛽  to  𝛼A𝛾  and  obtain  𝛼𝛽𝛾                                    
if we substitute A by 𝛽 in 𝛼A𝛾.                 
In this case we also say that  𝛼A𝛾  directly derives  𝛼𝛽𝛾  by  A → 𝛽.  

S  We say that two strings are in the relation G⇒                
if  the first directly derives the second one by one application of  a production in G.  

S  Let 𝛼1, 𝛼2, …, 𝛼m∊ (V UT )*, m ≥1, be strings.                 
If   𝛼1 G⇒𝛼2  ⋀  𝛼2 G⇒𝛼3  ⋀  …  ⋀  𝛼m-1 G⇒𝛼m                    m                    
then we say that 𝛼1 derives 𝛼m in G and denote this fact by 𝛼1 G⇒*𝛼m . 

      Note: The relation G⇒* is reflexive and transitive closure of  G⇒. 
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S  Definition. The language generated by a CFG G = (V,T,P,S ) is the set 

                               L(G) = {w|w ∊T *  ⋀ S G⇒* w}. 
 

So the language generated by G is the set of  all terminal strings that can be derived from S. 

S  Here are some further definitions that we will need in the following. 

Definitions.  

S  A language L is called context-free (CFL) if  it is L(G) for some CFG G.  

S  A string 𝛼 ∊ (V U T )* is called a sentential form if  S G⇒* 𝛼.  

S  Two grammars G 1 and G2 are said to be equivalent if  L(G1) = L(G2). 
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S  Example.  Consider a CFG  G = (V, T, P, S ), where   
S  V = {S},  
S  T = {a, b}, 

S  P = {S→ aSb, S→ ab}.  

So, S is the only variable and a, b are terminals. There are two productions, S→ aSb and S→ ab. 
  

What is L(G), the language generated by this G ?  
S  By applying the production S→ aSb  n-1 times, and then the production S→ ab, we have    

S ⇒ aSb ⇒ aaSbb ⇒ a3Sb3 ⇒ …⇒ an-1Sbn-1 ⇒ anbn .                                  
We have proved that S derives in G words of  the form anbn , n ≥ 1; that is, SG⇒*anbn , for n ≥ 1. 

S  But, can S derive anything else? No. We can show that the only strings in L(G) are anbn , n ≥ 1. 
How? Each time S→ aSb is applied, the number of  S 's in the sentential form remains the 
same. After applying S→ ab,  the number of  S ‘s decreases by one. So after applying S→ ab, 
no S's remain. Since both productions have an S on the left, the only order in which the 
productions can be applied is: S→ aSb (some number of  times) followed by one application 
of  S→ ab. Thus, L(G) ={anbn| n ≥ 1}. 



4.3 Derivation Trees 

S  Derivations can be displayed in terms of  derivation (or parse) trees. These 
are used in applications such as the compilation of  programming languages.  

S  Informally, the vertices of  such trees are labeled with variables or terminals (possibly 𝜀).  

S  If  an interior vertex is labeled with variable A then         
its sons are labeled left to right with X1, X2, …, Xk  iff  A→X1X2…Xk  is a production. 

S  Example (cont’d). The derivation E ⇒* (id + id) ∗ id is displayed by the following tree: 

E ⇒ E ∗ E 

   ⇒ (E) ∗ E 

   ⇒ (E) ∗ id  

   ⇒ (E + E) ∗ id  

   ⇒ (E + id) ∗ id  

   ⇒ (id + id) ∗ id 
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E
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E +

E )

E

id id

*
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S  We now define the notion of  a derivation tree formally. 

S  Definition. Let G = (V, T, P, S ) be a CFG. A tree is called a derivation 
(or parse) tree for G if: 
1)  Every vertex has a label which is a symbol in V U T U {𝜀}.  

2)  The label of  the root is S. 

3)  If  a vertex is interior and has label A, then A must be in V. 

4)  If  a vertex n has label A and vertices nl, n2, …, nk are the sons of  n                
(from left to right) with labels X1, X2, …, Xk , respectively,                        
then A→X1X2…Xk must be a production in P. 

5)  If  vertex n has label 𝜀, then n is a leaf  and is the only son of  its father.  
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S  Example. Consider the grammar G = ({S,A}, {a,b}, P, S ), where P 
has productions 

 S →  aAS |a 
      A → SbA|SS|ba 

 Question: Is the following tree a derivation tree for G? 

 

 

 

To answer this, we check whether the tree meets all the conditions of  the previous definition. The 
interior vertices are colored orange. The root is labeled S; its sons, from the left, are labeled a,A,S; 
and we see that S→ aAS  is a production of  G. (Similarly we check every internal vertex whether it and 
its sons correspond to a production in G.)               
In this example, all the conditions are met; the tree is a derivation tree for G. 

S

S

a

a

a

a b

S b A

A
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S  A derivation tree is a natural description of  the derivation of  a 
particular sentential form of  the grammar G. Why?  
S  Definition. Reading the labels of  all leaves during the preorder travesal          

of  the tree, we obtain a string called the yield of  the derivation tree. 

S   Shortly we will prove the following:   
       𝛼 is the yield of  a derivation tree for G = (V, T, P, S )   iff   S G⇒* 𝛼. 

S  Example(cont’d). The yield of  the derivation tree below is aabbaa . 
  

 

 

 

     Here, the yield consists of  terminals only (but it is not always so). 

a

a

a

a b

b

S

A

S

S

A
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S  We will need one more new notion. 
S  Definition. A subtree of  a derivation tree is a particular vertex of  the tree 

together with all of  its descendants, edges among them, and their labels.   
If  the root of  a subtree is labeled A, then the subtree is called A-tree. 
A subtree is just like a derivation tree, but the label of  its root may not be the start symbol S of  the grammar.   

S  Example(cont’d). Below is a derivation tree and one of  its A-trees 
(yellow). The yield of  this A-tree is abba (yellow leaves). 

 

a

a

a

a b

b

S

A

S

S

A
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S  The relationship between derivation trees and derivations. 

S  Theorem. Let G = (V, T, P, S ) be a CFG.                
         Then S G⇒* 𝛼  iff   there is a derivation tree for G with yield 𝛼. 

S  Proof idea. Induction on the number of  interior vertices of  the tree. (Try it.) ⧠ 
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S  Leftmost and rightmost derivations. 

S  Definition. A derivation is said to be leftmost if  at each step of  the derivation 
a production is applied to the leftmost variable. Similarly, a derivation is 
rightmost if  at each step a production is applied to the rightmost variable. 

S   Example. The leftmost derivation corresponding to the tree below is 
    

     S ⇒ aAS ⇒ aSbAS ⇒ aabAS ⇒ aabbaS ⇒ aabbaa  
     ☝︎        ☝︎           ☝︎                   ☝                  ☝︎ 

                 and the rightmost derivation is  
     

    ︎S ⇒ aAS ⇒ aAa ⇒ aSbAa ⇒ aSbbaa ⇒ aabbaa  
   ☝︎          ☝︎       ☝︎            ☝        ☝︎ 
 
 

 

 

 
   

 

a

a

a

a b

b

S

A

S

S

A
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S  Ambiguity. 

S  If  w ∊ L(G) for a CFG G, then w has at least one derivation tree. 
Corresponding to a particular derivation tree, w has a unique leftmost and a 
unique rightmost derivation.  

S  Definition. A CFG G is said to be ambiguous if  some word has more than 
one derivation tree.  
Equivalently: A CFG is ambiguous if  some word has more than one leftmost (rightmost) derivation. 

  

S  Example. G = ({S,A,B},{a},{S → A|B, A → a, B → a}).                                                
Note, that a has two derivation trees corresponding to               
two derivations: S G⇒A G⇒ a and S G⇒B G⇒ a.     

S  Definition. A CFL L is said to be inherently ambiguous if  every CFG for L 
is ambiguous.  
Later we will see that such CFL's do exist ! 

 
   

 

a

S

A

a

S

B



4.4 Simplification of      
 Context-Free Grammars 

S  There are several ways to restrict the form of  productions without 
reducing the power of  CFG’s. If  L is a nonempty CFL then L can be 
generated by a CFG G having the following properties:  

S  Each variable and terminal of  G appears in the derivation of  some word in L. 

S  There are no productions of  the form A → B, where A and B are variables.  

S  If   𝜀 ∉ L, there are no productions of  the form A → 𝜀.  
S  If  𝜀 ∉ L, we can require that 

S  every production is of  the form A → BC  or  A → b      (Chomsky normal form)                                   
where A, B, C are variables and b a terminal;  

S  or, every production is of  the form A → bγ                  (Greibach normal form)                           
where  b ∊ T  and γ∊ V*  (a string of  variables).   
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S  Elimination of useless symbols. 

S  Of course, we want to eliminate all useless symbols from a grammar. 

S  Definition. Let G = (V, T, P, S) be a grammar.  A symbol X is useful if  there exists       
a derivation S ⇒* 𝛼X𝛽 ⇒* w for some 𝛼,𝛽, and w ∊ T*. Otherwise X is useless. 

  
S  Lemma. Given a CFG G = (V, T, P, S) with L(G) ⧧  , we can effectively find an equivalent CFG   

G’ = (V’, T, P’, S) such that for each A ∊ V’  there is a w ∊ T *  so that A ⇒* w.  

S  Lemma. Given a CFG G’ = (V’, T, P’, S), we can effectively find an equivalent CFG                     
G’’ = (V’’,T, P’’, S) such that for each X ∊V’’ UT  there are 𝛼, 𝛽 ∊ (V’’ UT )* so that A ⇒*𝛼X𝛽.  

S  By applying the lemmas in this order, we can convert a CFG G to the equivalent G’’ without useless 
symbols. (Interestingly, applying them in the reverse order may fail to eliminate all useless symbols.) 

S  Theorem. Every nonempty CFL is generated by a CFG with no useless symbols. 

S  From now on we assume that grammars have no useless symbols. 
   

 

;
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S  Elimination of 𝜀-productions. 

S  Definition. An 𝜀-production is a production of  the form A→ 𝜀.  

S  Clearly, if  𝜀 is in L(G ), we cannot eliminate all 𝜀-productions from G. (Otherwise, 𝜀 would no longer 
be in the generated language.)  But if  𝜀 is not in L(G ), we can eliminate all 𝜀-productions from G. 

S  Theorem. If  L = L(G ) for some CFG G = (V, T, P, S ), then L -{𝜀} can be 
generated by a CFG G ’ that has no useless symbols and no 𝜀-productions. 

S  Proof idea.  

S  Determine for each A ∊ V  whether A ⇒* 𝜀.  If  so, call A nullable.  

S  Then replace each production B → X1X2…Xn  by all productions formed by striking out some subset of  those 
Xi’s that are nullable, but do not include B → 𝜀, even if  all Xi’s are nullable.  

⧠ 
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S  Elimination of unit productions. 

S  Definition. A unit production is a production of  the form A→ B.  
The right-hand side must be a single variable; all other productions, including A → a and 𝜀-productions, are non-unit. 

S  Theorem. Every CFL without 𝜀 can be generated by a grammar                  
that has no useless symbols, no 𝜀-productions, and no unit productions.  



4.5 Chomsky Normal Form 

S  Normal-form theorems state that all CFGs are equivalent to 
grammars with certain restrictions on the form of productions.         
The first such theorem is due to Noam Chomsky.  

 

S  Theorem (Chomsky normal form). Every CFL without 𝜀 can be generated 
by a grammar in which every production is of  the form      

        A → BC      or        
                                     A → a  

       where A, B, C are variables and a is a terminal. 
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S  Proof (constructive). 
S  Let L(G) be a CFL without 𝜀.  
S  Find an equivalent CFG G1=(V,T,P,S) without useless variables, unit productions, and 𝜀-productions.  
S  If  a production of  P has a single symbol on the right-hand side, that symbol must be a terminal, so the production is  
         already in an acceptable form.  
S  If  a production of  P does not have a single symbol on the right-hand side, it must be of  the form A→X1X2…Xm (m ⩾ 2).  
         (Here Xi may be a variable or a terminal.)     

S  If  Xi is a terminal, say a, then 
S  introduce a new variable Ca  
S  introduce a new production Xi→ a (which is in allowable form), and  
S  replace Xi by Ca .  
When this is done for all Xi that are terminals, we have a new set V ’ of  variables and a new set P ’ of  productions. 
Let G2 = (V ’,T,P ’,S). We can show that L(G1) = L(G2). (Exercise.) 

S  So L(G) is generated by a CFG G2 whose productions are either of  the form A→a   or  A → B1B2…Bm (m ⩾ 2).  
         (Here Bi  are variables and a is a tereminal.) 

S  If  a production is  A→B1B2…Bm  , where m ⩾ 3, then 
S  create new variables D1, D2, ..., Dm-2  
S  replace the production by the productions A → B1D1,  
                                                                                                   D1 → B2D2,  
                                                                                                  ⋱ 
                                                                                                      Dm-3 → Bm-2Dm-2,  
                                                                                                                            Dm-2 → Bm-1Bm.  

When done for all productions A→B1B2…Bm, m ⩾ 3, we have a set V ’’ and a set P ’’ of  productions of  the form A→ a or A→BC. 
Let G3 = (V ’’,T,P ’’,S). We can show that L(G2) = L(G3); so  L(G) = L(G3). (Exercise.) 

 ⧠ 

 



4.6 Greibach Normal Form 

S  There is another normal-form theorem that uses productions whose right-
hand sides start with a terminal symbol that is followed by variables only.            
The theorem is due to Sheila Greibach. 

 

S  Theorem (Greibach normal form). Every CFL without 𝜀 can be generated  
by a grammar in which every production is of  the form      

            A → bγ 
where A is a variable, b is a terminal, andγis a (possibly empty) string of  
variables (γ∊ V *). 
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S  Proof idea (constructive). 
S  Let L(G) be a CFL without 𝜀 where G = (V,T,P,S) is in Chomsky normal form and V = {A1 , A2 , ... , Am}.  
S  Construct an equivalent CFG G1=(V,T,P,S) without useless variables, unit productions, and 𝜀-productions.  
 
S  Modify the productions so that the following will be fulfilled: if  Ai → Aj 𝛾 is a production, then j > i . 
                 To achieve this, introduce new variables B1 , B2 , ..., Bm . This returns only productions of  the forms  

                                                             Ai → Aj𝛾,  where   j > i  
                                                                   Ai → a𝛾,   where   a ∊ T 
                                                                   Ai → a𝛾,   where  𝛾 ∊ (V U {B1, B2, ..., Bi-1})*.  

S  Modify all Am-productions, then all Am-1-productions, then all Am-2-productions, and so on.. 
                  To modify Ak-productions (m ⩾k ⩾1), do as follows: 

                                        For each Ak-production: 
                                            locate in the right-hand side of  the production the leftmost variable, say X; 
                                            replace X by the right-hand sides of  all X-productions.  

                   Now all A-productions have right sides beginning with a terminal.  
                   But B-productions may still have right-hand sides beginning with variables Ai . This corrects the next step.  
 
S  Modify the productions for the new variables B1, B2, ..., Bm . 

                   For each B-production whose right-hand size begins with a variable, say Ai , do the following: 
                            replace Ai  by the right-hand sides of  all Ai -productions.  
⧠ 

   



4.7 Inherently Ambiguous  
 Context-Free Languages 

S  It is easy to construct ambiguous CFGs. For example, the CFG with 
productions S→A|B, A→a, B→a is ambiguous. (Why?) 

S  More difficult is to find a CFL for which every CFG is ambiguous.        
Such a CFL is said to be inherently ambiguous.                                      
But, do such CFLs exist? Yes.  

S  Theorem. The CFL L = {a 
nb 

nc 
md 

m|n,m ⩾1} U {a 
nb 

mc 
md 

n|n,m ⩾1}      
is inherently ambiguous.   

S  Proof. By contradiction. (Long and tedious. We omit it.) ⧠ 
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4.8 Dictionary 

context-free grammar kontekstno neodvisna gramatika  context-free language kontekstno neodvisen jezik terminal 
terminal production produkcija to derive izpeljati  start symbol začetni simbol to apply (a production) uporabiti 
(produkcijo) to directly derive neposredno izpeljati  language generated generiran (izpeljan) jezik sentential form 
stavčna oblika derivation tree drevo izpeljave yield (of  a derivation tree) krošnja (drevesa izpeljave) subtree poddrevo 
leftmost/rightmost derivation leva/desna izpeljava ambiguous dvoumen inherently ambiguous bistveno dvoumen 
format of  a production oblika produkcije useful/useless symbol potreben/nepotreben simbol  𝜀-production       
𝜀-produkcija nullable variable uničljiva spremenljivka unit production enotska produkcija  Chomsky normal form 
normalna oblika Chomskega Greibach normal form normalna oblika Greibachove 
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Pushdown Automata 
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5.1 Introduction 

S  Just as regular expressions (and sets) are associated with a particular 
machine--- the FA---so are the CFGs (and hence CFLs) associated with a 
particular kind of  machine---the pushdown automaton (PDA).  

S  The PDA is essentially a FA having control of  its input tape and a stack. 

S  But there are differences: the PDA is a nondeterministic device (by definition), 
and its deterministic version, DPDA, accepts just a proper subset of  all CFLs.  

S  Happily, this subset contains most programming languages. 
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S  The PDA has an input tape, a control unit, and a stack.  

S  The stack is a string of  symbols from some alphabet. The leftmost 
symbol of  the string is at the top of  the stack.  

 

S  The device is by definition nondeterministic, in each situation having 
some finite number of  choices for the next move.  

tape

control unit

window
stack

top
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S  The moves are of  two types, regular moves and 𝜀-moves. 
S  In the regular move, the input symbol is consumed.  
      Depending on the 

S  state q of  the finite control, 
S  input symbol a, and 
S  top stack symbol Z,  

there are finitely many alternatives: 

S  i-th alternative consists of  a 

S  next state pi  (for the finite control),  

S  string 𝛾i (possibly empty) of  stack symbols                                 i (possibly empty) of  stack symbols                                 
to replace Z.  

Now an alternative is nondet. selected and carried out  

and the window advances (consumes) one symbol.  

a

q

Ztop

a

pi

topmove
�i
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S  (cont’d) 
S  In the 𝜀-move, an input symbol is not consumed.  
      Depending on the 

S  state q of  the finite control, 
S  top stack symbol Z, 

and independently of  the input symbol  ●, 

there are finitely many alternatives: 
S  i-th alternative consists of  a 

S  next state pi  (for the finite control),  

S  string 𝛾i (possibly empty) of  stack symbols                                 i (possibly empty) of  stack symbols                                 
to replace Z.  

Now an alternative is nondet. selected and carried out  

and the window does not advance. 

S  Note: 𝜀-moves allow PDA to manipulate the stack without reading input symbols. 

 

q

Ztop

pi

top
�i

move
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S  We can now define the language accepted by a PDA. This can be done in 
two ways: The language of  PDA is the set of  all words for which 

1.   some sequence of  moves causes the PDA to empty its stack.            
This is the language accepted by empty stack.               

2.   some sequence od moves causes the PDA to enter a final state.          
This is the language accepted by final state. 

S  We’ll see that the two definitions are equivalent, in the sense that          
L is accepted by empty stack by some PDA  iff   L is accepted by final state by some (other) PDA.  

S  The 2nd definition is more common. But by using the 1st definition      
it is easier to prove the basic theorem of  PDA, which states that  

                                              L is accepted by a PDA  iff   L is a CFL. 



5.2 Definitions 
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S  Definition. A pushdown automaton (PDA) is a 7-tuple                            
           , where: 

S      is a finite set of  states,     
S      is the input alphabet,  

S      is the stack alphabet, 
S                is the initial state, 
S               is the start symbol, 

S               is the set of  final states, and    
S      is the transition function,                      

 i.e. a mapping from                               to finite subsets of  

S  Note:    can be viewed as a program of  PDA. Every PDA has its own specific   .  

Q

⌃

�

q0 2 Q

F ✓ Q

�

M = (Q,⌃,�, �, q0, Z0, F )

�

Z0 2 �

Q⇥ (⌃ [ {"})⇥ � Q⇥ �⇤.

�
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S  Moves of the PDA.  

S  The interpretation of  the move          
S  𝛿(q,a,Z) = {(p1,𝛾1), (p2,𝛾2), …, (pm,𝛾m)} is that the PDA in state q, with 

input symbol a and Z the top symbol on the stack can, for any i, 1⩽i⩽m, 
enter state pi, replace symbol Z by string 𝛾i , and advance the window i , and advance the window 
one symbol. We call this the regular move. 

S  𝛿(q,𝜀,Z) = {(p1,𝛾1), (p2,𝛾2), …, (pm,𝛾m)} is that the PDA in state q, 
independently of  the input symbol being scanned and with Z the top symbol 
on the stack, can enter state pi, and replace Z by 𝛾i , for any i, 1⩽i⩽m. In i , for any i, 1⩽i⩽m. In 
this case, the window is not advanced. We call this the 𝜀-move. 

Conventions: the leftmost symbol of  𝛾i is placed highest on the stack and the rightmost symbol of  i is placed highest on the stack and the rightmost symbol of  
𝛾i lowest on the stack. We use a,b,c,… for input symbols, u,v,w,… for strings of  input symbols, i lowest on the stack. We use a,b,c,… for input symbols, u,v,w,… for strings of  input symbols, 
capital letters for stack symbols, and Greek letters for strings of  stack symbols. 
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S  Instantaneous descriptions of the PDA.  

S   We want to describe the configuration of  a PDA at a given instant. These 

“snapshots” of  PDA’s execution are formalized by instantaneous descriptions. 

S  Definitions. An instantaneous description (ID) is a tripple (q,w,𝛾), where q is 

a state, w a string of  input symbols, and 𝛾 a string of  stack symbols. 

S  If                                           is a PDA, we say that ID (q, ax, Z𝛽) can directly become 

ID (pi, x, 𝛾i𝛽), --- written (q, ax, Z𝛽) M⊢ (pi, x, 𝛾i𝛽), --- if  𝛿(q, a, Z) contains (pi, 𝛾i). 

Here, a may be an input symbol or 𝜀.  

S  We write M⊢* for the reflexive and transitive closure of  M⊢ and say that an ID I can 

become ID J  if I M⊢* J.  We write I M⊢k J  if  I M⊢* J  in exactly k moves. 

The subscript M can be dropped whenever the particular PDA M is understood. 

  

M = (Q,⌃,�, �, q0, Z0, F )



Borut Robič, Computability & 
Computational Complexity 

157 

S  (cont’d)  
S  Informally, the situation on the left can directly change to the situation on the right 

only if  the PDA M contains the instruction 𝛿(q, a, Z) = {..., (pi, 𝛾i), ...}. Whether or 

not the change will actually take place depends on whether or not PDA will choose 

the move (pi, 𝛾i). 

  

a

q

Ztop
pi

top
�i

x
��

a
x

⊢

ID (q, ax, Z�) directly becomes ID (pi,  x, �i �)
if  �(q,a,Z)  contains   (pi,  �i )

M
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S  Accepted languages of the PDA.  

S  Definitions. For PDA                                              we define two languages:   

S  L(M), the language accepted by final state, to be  

 L(M) = {w ∊     | (q0, w, Z0) ⊢* (p, 𝜀, 𝛾)  for some p ∊ F and 𝛾 ∊ 𝛤*} 

S  N(M), the language accepted by empty stack, to be  

 N(M) = {w ∊    | (q0, w, Z0) ⊢* (p, 𝜀, 𝜀)  for some p ∊ Q}. 
 

L(M) contains a word w  if  after reading w, M can be (nondeterminism!) in some final state.       
N(M) contains a word w  if  after reading w, M can have (nondeterminism!) its stack empty. 

If  acceptance is by empty stack, final states are irrelevant; in this case, we usually let F  =   . 

M = (Q,⌃,�, �, q0, Z0, F )

;

⌃⇤

⌃⇤
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S  Example. Here is a PDA M accepting {wcwR|w ∊ (0+1)*} by empty stack. 

S  Idea. Read input and, for each symbol read, push its representative (B for 0, G for 1) on the stack. 
When c is read, change the state. Continue reading the input and, for each symbol read, pop the stack 
symbol. If   there are no more input symbols and R (bottom of  the stack) has just been popped, the 
input must have been of  the form wcwR. So the stack is emptied to signal the acceptance of  the input. 

S  M = ({q1, q2}, {0,1,c}, {R,B,G}, 𝛿, q1, R,    ), where 𝛿 is defined as follows: 

1.  𝛿(q1, 0, R) = {(q1, BR)}      2.  𝛿(q1, 1, R) = {(q1, GR)} 
3.  𝛿(q1, 0, B) = {(q1, BB)}      4.  𝛿(q1, 1, B) = {(q1, GB)} 
5.  𝛿(q1, 0, G) = {(q1, BG)}     6.  𝛿(q1, 1, G) = {(q1, GG)} 

          7.  𝛿(q1, c, R) = {(q2, R)} 
          8.  𝛿(q1, c, B) = {(q2, B)} 

           9.  𝛿(q1, c, G) = {(q2, G)} 
10.  𝛿(q2, 0, B) = {(q2, 𝜀)}       11.  𝛿(q2, 1, G) = {(q2, 𝜀)} 

         12. 𝛿(q2, 𝜀, R) = {(q2, 𝜀)} 

Note. Although PDA’s are nondeterministic by definition, the above M has just one choice of  move in each situation. 

;
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S  Example. Here is a PDA M’ accepting {wwR|w ∊ (0+1)*} by empty stack. 

S  Note.  Now there is no symbol c indicating the middle of  the input word (as in previous example). So, the M ’ will have 
to guess that the middle of  the word has been reached. How? Recall that PDA is  by definition non-deterministic, 
always choosing the right move when there is one. We will have to add to the program of  M ’ the possibility of  choosing. 

S  Idea. Read input and, for each symbol read, push its representative (B for 0, G for 1) on the stack. Whenever the input 
symbol “equals” the top stack symbol, the middle of  the input word may have been reached. Non-deterministically 
decide if  this is so and, in this case, change the state (otherwise push the representative of  the input symbol on the 
stack). After the middle of  the word has been guessed, continue reading the input and, for each symbol read, pop the 
stack symbol if  it represents the input symbol (if  it doesn’t, the input word is not of  the form wwR, so halt as there is no 
instruction for this situation). If  there are no more input symbols and R (bottom of  the stack) has just been popped, 
the input word must have been of  the form wwR. So empty the stack to signal the acceptance of  the word.                  
If  M ’ never detected the middle of  the input word, the word must have been 𝜀 or a single symbol, so accept the word. 

S  M’ = ({q1, q2}, {0,1}, {R,B,G}, 𝛿, q1, R,   ), where 𝛿 is defined as follows: 

1.    𝛿(q1, 0, R) = {(q1, BR)}      2.    𝛿(q1, 0, G) = {(q1, BG)} 

3.    𝛿(q1, 1, R) = {(q1, GR)}       4.    𝛿(q1, 1, B) = {(q1, GB)} 
5.    𝛿(q1, 0, B) = {(q1, BB), (q2, 𝜀)}  6.    𝛿(q1, 1, G) = {(q1, GG), (q2, 𝜀)} 

7.    𝛿(q2, 0, B) = {(q2, 𝜀)}   8.    𝛿(q2, 1, G) = {(q2, 𝜀) 
9.    𝛿(q2, 𝜀, R) = {(q2, 𝜀)}   10.  𝛿(q1, 𝜀, R) = {(q2, 𝜀)} 

;
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S  Informally, the example PDA that accepted {wcwR|w ∊ (0+1)*} was 
‘‘deterministic’’ because at most one move was possible from any ID. 
But, the formal definition of  the deterministic PDA is more precise. 

S  Definition. A PDA                                             is called deterministic 
if  𝛿 fulfills two conditions for every  
1.     

2.    

 

What does that mean?   Condition 1 prevents the possibility of  a choice between an       
𝜀-move and a regular move. Condition 2 prevents the possibility of  a choice in the case  
of  an 𝜀-move and the possibility of  a choice in the case of  a regular move.  

S  Note. Unlike FA, a PDA is assumed to be nondeterministic unless we state 
otherwise. In this case, we denote it by DPDA (for deterministic PDA). 

M = (Q,⌃,�, �, q0, Z0, F )

�(q, ", Z) 6= ; =) 8a 2 ⌃ : �(q, a, Z) = ;
8a 2 ⌃ [ {"} : |�(q, a, Z)|  1

q 2 Q and Z 2 � :



5.3 Pushdown Automata                    
and Context-Free Languages 
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S  We saw that deterministic FA’s accept the same class of  languages as  
nondeterministic FA’s (i.e. regular sets). 

S  Question: Do deterministic PDA’s accept the same class of  languages as  
nondeterministic PDA’s?  

PDA’s can accept in two ways (by empty stack and final state). So there are two kinds of  accepted languages, 
L(M)’s and N(M)’s.  

S  Question: Which of  the two ways is meant by `accept’ in the above question? 
S  Answer: It doesn’t matter! (We will see that the class of  all L(M)’s and the class of  all N(M)’s are the same.) 

S  Question: Does this class contain any languages that we already know?  

S  Answer: Yes.  We will see that this class is the same as the class of  all CFL’s. 

S  Answer: No!  

      {wwR|w ∊ (0+1)*} is accepted by a nondeterministic PDA but by no DPDA. 
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S  Equivalence of acceptance by final state and empty stack 

S  Do acceptance by final state and acceptance by empty stack differ in their power? We 
suspect the answer is no. To prove that, must prove that the class of  languages accepted 
by PDA’s by final state is the same as the class of  languages accepted by PDA’s by empty 
stack. Hence, we must show that if a language L is accepted by some PDA by final state, 
then L is accepted by some PDA by empty stack---and vice versa. We can prove both. 

S  Theorem. If  L=L(M2) for some PDA M2, then L=N(M1) for some PDA M1. 
S  Proof idea. Given an arbitrary L = L(M2), construct a PDA M1 that simulates M2                                             

but erases the stack whenever M2 enters a final state. So we have L = N(M1).   ⧠ 

S  Theorem. If  L=N(M1) for some PDA M1, then L=L(M2) for some PDA M2. 
S  Proof idea. Given an arbitrary L =N(M1), construct a PDA M2 that simulates M1                                             

but enters a final state whenever M1 erases its stack. So we also have L = L(M2). ⧠ 

S  Summary: The class of  languages accepted by PDA's by final state is  
 the same as the class of  languages accepted by PDA's by empty stack. 
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S  Equivalence of PDAs and CFLs 

S  Is there any link between the languages accepted by PDAs and the regular or context-
free languages? We suspect that PDAs can accept more than just regular sets. (Why?)  
So, can PDAs accept CFLs? To prove that, we must show that if  L is a CFL, then L is 
accepted by some PDA. If  so, can PDAs accept more than CFLs? To prove that they 
can’t, we must show that if  L is accepted by a PDA, then L is CFL. Both can be proved. 

S  Theorem. If  L is a CFL, then there exists a PDA M such that L=N(M). 
S  Proof idea. Let L be an arbitrary CFL.  L can be generated by a CFG G in Greibach normal form. Construct a 

PDA M that simulates leftmost derivations of  G. (It is easier to have M accept by empty stack.) So L = N(M).⧠ 

S  Theorem. If  L=N(M) for some PDA M, then L is a CFL. 
S  Proof idea. Let M be an arbitrary PDA. Construct a CFG G in such a way that a leftmost derivation in G of  a 

sentence x is a simulation of  the PDA M  when given the input x. So L=L(G), a CFL. ⧠ 

S  Summary: The class of  languages accepted by PDAs is exactly the class of  CFLs. 
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S  Deterministic vs. nondeterministic PDAs 

S  We now know that (nondeterministic) PDAs accept exactly CFLs. What 
about deterministic PDAs? These are obtained by restricting PDAs, so it is 
natural to ask whether they are powerful enough to accept all CFLs?  

Question: Is the class of  languages accepted by DPDAs the same as the class of  CFLs? 

Answer: No; there exist CFLs that are not accepted by any DPDA.  

 

S  Theorem. {wwR|w ∊ (0+1)*} is accepted by a PDA but not by any DPDA. 
S  Proof idea. Omitted. ⧠ 

S  Summary: Deterministic PDAs are less powerful than nondeterministic PDAs. 
 



5.4 Dictionary 

pushdown automaton skladovni avtomat  stack sklad regular move običajen prehod, običajna poteza 𝜀-move tihi 
prehod, tiha poteza language accepted by empty stack (final state) jezik sprejet s praznim skladom (končnim stanje) 
basic theorem of  PDA osnovni izrek skladovnih avtomatov stack alphabet skladovna abeceda instantaneous 
description trenutni opis directly   becomes neposredno preide v becomes preide v 
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of Context-Free Languages 
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6.1 Introduction 

S  This chapter parallels Chapter 3 (Properties of  Regular Sets).                  
In this chapter, we shall: 
S  state a pumping lemma for CFLs. The lemma can be used to show that 

certain languages are not context-free.  

S  consider some operations that preserve CFLs. Such closure properties are 
useful not only for proving that certain languages are context-free, but 
also for proving that certain languages are not context-free.  

S  describe decision algorithms to answer certain questions about CFLs. 
These questions include whether a given CFL is empty, finite, or whether 
a given word is a member of  a given CFL.     

S  learn that some questions about CFLs cannot be answered by any algorithm ! 
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6.2 The Pumping Lemma for CFLs 

S  Recall: The pumping lemma for regular sets states that every 
sufficiently long word in a regular set contains a short sub-word close to 
the beginning of  the word that can be repeated as many times as we 
wish, and the obtained word will still be in the same regular set. 

S  The pumping lemma for CFLs states that every sufficiently long word 
in a CFL contains two short sub-words close together that can be 
repeated, both the same (arbitrary) number of times, and the obtained 
word will still be in the same CFL. 

S  The formal statement of  the pumping lemma is as follows. 
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S  Pumping Lemma (for CFLs).  Let L be a CFL. Then there is a 
constant n (depending on L only) such that the following holds:           
if z is any word such that      

 z ∊ L and |z|⩾ n,             
then there are words u, v, w, x, y  such that    

 z = uvwxy,                       
 |vx|⩾ 1,       
 |vwx|⩽ n, and                                                                      
 ∀i ⩾ 0: uviwxiy ∊ L.      

S  Informally.  Given any sufficiently long word z in a CFL L, we can find two short sub-words v and x  close together 
that may be repeated, both the same arbitrary number of  times, and the resulting word will still be in L. 

S  Proof. Omitted. ⧠ 

vu w

vu wv v

z

uv 

i
 wx 

i
 y

x y

x yx x
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S  Example.   
S  Let L = {aibici|i⩾1}. We want to prove that L is not context-free. 
S  The method is similar to that for regular sets.  

S  Let n be the constant from the lemma.  
S  Observe the word z = anbncn.  (z is ‘good’ because z ∊ L and |z|= 3n ⩾ n.) 
S  There are many ‘good’ partitions of  z into u,v,w,x,y  (so that z = uvwxy,|vwx|⩽ n,|vx|⩾1).  
S  Now we ask: Where in anbncn  can be v and x ?  

S  Since |vwx|⩽ n, it is not possible for vx to contain both a’s and c’s.    (Explain why.) 
S  So vx can contain either  a’s only  or  a’s and b’s  or  b’s only  or  b’s and c’s   or  c’s only. 
S   We analyze each of  the above alternatives: 

S  If  v and x consist of  a’s only, then uv0wx0y = uwy  has n b’s and n c’s but less than n a’s 
       (because |vx|⩾1). Thus uv0wx0y is not in L.  
S  If  v and x consist of  a’s and b’s, then uv0wx0y = uwy  has more c’s than a’s or b’s, so it is not in L. 
S  The other three alternatives are analyzed similarly. Each leads to the conclusion that uv0wx0y is not in L. 

S  According to our method, this implies that L is not context-free. 

      The example shows: There exist languages that are not context-free!                   
For such languages we’ll need a model of  computation more powerful than PDA.  
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S  *Ogden’s Lemma. 

S  There are certain non-CFLs for which the pumping lemma is of  no help (e.g. L = {a ib  
jc 

id  j|i, j ⩾1}). 
We need a stronger version of  the pumping lemma for CFLs that will allow us to focus on some small 
number of positions in the word and pump them. (Such an extension is easy for regular sets. The result 
for CFLs is much harder to obtain.) Here is a weak version of  the so-called Ogden's lemma. Using this 
lemma we can prove that the above L is not CFL. 

S  Ogden’s Lemma. Let L be a CFL. Then there is a constant n (which may be the same as 
for the pumping lemma) such that the following holds:                            
if z is any word such that       

 z ∊ L  and we mark any n or more places in z,            
then there are words  u, v, w, x, y  such that     

 z = uvwxy,                       
 vx     has at least one marked place,     
 vwx   has at most  n   marked places, and                       
 ∀i ⩾ 0: uv 

iwx 
iy ∊ L.      

S  Proof. Omitted. ⧠ 



6.3 Closure Properties for CFL’s 

S  Some operations on languages preserve CFLs (in the sense that the operations applied to 
CFLs return CFLs). 

S  We say that the class of CFLs is closed under an operation if  the operation applied to any 
members of  the class is a member of  the class.   

S  If  the class of  CFLs is closed under a particular operation, we call that fact 
closure property of  the class of  CFLs. 

S  We are particularly interested in effective closure properties of  the class of  CFLs. For such 
properties there is exists an algorithm which constructs from given descriptors for CFLs              
a descriptor for the CFL that is the result of  applying the operation to these CFLs. 
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S  Theorem.  The class of  CFLs is closed under  
S  union,              
S  concatenation, 
S  Kleene closure, 
S  substitution (and hence homomorphism), 
S  inverse homomorphism. 

         Proof. Omitted. ⧠ 

S  Theorem.  The class of  CFLs is not closed under  
S  intersection,              
S  complementation. 

         Proof. Omitted. ⧠ 

S  But: the class of  CFLs is closed under intersection with regular sets:  
Theorem.  If  L is a CFL and R is a regular set, then L ⋂ R is a CFL. 

         Proof. Omitted. ⧠ 
 



6.4 Decision Algorithms for CFLs 

S  We are now interested in decision algorithms for various decision problems 
about CFLs; e.g. “Is a given CFL L empty (or nonempty)? Is L finite (or infinite)? 
Is a given word in L?’’ For these problems, we will find decision algorithms. 

S  There are other decision problems about CFLs: “Is the complement of  L a 
CFL? Is L cofinite? Are two CFGs equivalent? Is a CFG ambiguous?” We’ll find 
tools for showing that no algorithm can do a particular job. Only later (Chap. 8) 
we will actually prove that the above problems have no decision algorithms !!! 

S  CFLs can be represented by CFGs, PDAs (empty stack) and PDAs (final state). 
But we can algorithmically transform one representation into another, so our 
results will not depend on the representation we choose. Let us choose CFGs.   
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S  Emptiness and finiteness of CFLs.  
 

S  Theorem. There exist decision algorithms to determine if  a CFL is: 
1)  empty; 

2)  finite; 

3)  infinite. 
 

S  Proof idea. Let G  = (V, T, P, S) be a CFG.  

S  To test whether L(G) is (non)empty, use the test to determine if  a variable generates any string of  terminals.              
In particular: L(G) is nonempty iff  the start symbol S generates some string of  terminals.  

S  To test if  L(G) is (in)finite, find a CFG G’ = (V’,T,P ’,S) in Chomsky Normal Form with no useless symbols, 
generating L(G) - {𝜀}. (Note: L(G’ ) is finite iff  L(G) is finite.) Draw a directed graph with a vertex for each 
variable in V’ and an arc from A to B if  there is a production in P ’ of  the form A→ BC or A→ CB (for any C). 
Then L(G’ ) is finite iff  the graph has no cycles. 

⧠ 
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S  Example. Consider the grammar G1 = (V, T, P, S) = ({A,B,C,S}, {a,b}, P, S ), where P 
consists of  the following productions: 

  S → AB 
  A → BC | a 
  B → CC | b 
  C → a   

G1 is in Chomsky Normal Form and has no useless variables. The corresponding graph 
(see above) has no cycles, so L(G1) is finite. 

S  Example. Let us add the production C → AB to the above grammar. The new grammar 
G2 is still in Chomsky Normal Form and has no useless variables. The corresponding 
graph (see below) has cycles, so L(G2) is infinite. 
 

 

⧠ 

 

C

B

S

A

C
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S  Membership.  

S  Definition. The membership problem for CFGs is the question 
``Given a CFG G = (V, T, P, S) and a word x ∊ T *, is x ∊ L(G) ?’’ 

S  Question. Does there exist a decision algorithm such that, given an 
arbitrary CFG G and an arbitrary word x ∊ T *, answers the question 
``Is x a member of  L(G) ?’’ 

S  Answer. The answer is YES; there is the following naïve algorithm:  

1.  Convert G to Greibach normal form (GNF) G’. /* Recall: L(G’) = L(G) – {𝜀} */ 
2.   If x = 𝜀 then test whether S G⇒*𝜀 else 

/* Now x ∊ L(G’) iff   x ∊ L(G), so focus on GNF G’. Note: every production of  a GNF grammar   
adds exactly one terminal to the string being generated. So, if  x has a derivation in G’, then the 
derivation has exactly |x| steps. Next, if  every variable of  G’ has ⩽ k productions, then there are ⩽ k|x| 
leftmost derivations of  words of length |x|. So, is x among them? */  

             Try all such derivations systematically to see if  x is among them. 
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S  (cont’d)  
S  The naïve decision algorithm is inefficient because it may check 

exponential number of  derivations.  

S  However, there is a better, more efficient decision algorithm, 
called the CYK algorithm (for Cocke-Younger-Kasami).           
This  algorithm 
S  is based on the dynamic programming technique, and  

S  runs in O(n3) time, where n =|x|. 
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S  *The CYK algorithm (for Cocke-Younger-Kasami) 

S  Let x be an arbitrary word of  length n ⩾ 1, and G an arbitrary CFG in Chomsky normal form (CNF). 

S  Let xij  be the subword of  x of  length j beginning at position i. Note: 1 ⩽ i ⩽ n  and 1 ⩽ j ⩽ n-i+1.  

S  We want to determine for each i and j and for each variable A, whether A G⇒* xij .  
To achieve that, we make the following key observations : 
S  [Case j =1] xij is just one symbol (terminal). Note: A G⇒* xij  iff   A → xij is a production. 

S  [Case j >1] xij has at least 2 symbols (terminals). Note: A G⇒* xij  iff   there is some production A → BC and 
some k (1 ⩽ k ⩽ j ) such that B derives the first k symbols of  xij  (i.e. B G⇒* xik ) and C derives the last j-k 
symbols of  xij  (i.e. C G⇒* xi+k,j-k ).  

S  [Case j = n] There is just one subword, x1n , i.e. the whole x. Note: We must determine whether S G⇒* x1n .  

Of  course, several variables may generate xij ; let us collect them in the set Vij  = {A|A G⇒* xij }. 
Note:  given j, the variable i can vary from 1 to n-j+1.  

S  Algorithm idea.  Compute the sets Vij  by increasing j = 1, …, n while applying the notes in the 
above cases [j=1], [j>1], and [j=n].       
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S  (cont’d) 

begin /* CYK Algorithm 

1)      for i := 1 to n do 

2)           Vi1 := {A|A → a is a production  ⋀  the ith symbol of  x is a}; 

3)      for j := 2 to n do 

4)           for i := 1 to n – j + 1  do 

5)                Vij :=   ; 

6)                for k := 1 to j – 1  do 

7)                       Vij := Vij U {A|A → BC  is a production  ⋀  B ∊ Vik  ⋀  C ∊ Vi+k,j-k }   

              endfor 

          endfor    

end        

;



6.5 Dictionary 

pumping lemma for CFL lema o napihovanju za KNJ Ogden’s lemma Ogdenova lemma cofinite kofiniten CYK 
algorithm algoritem CYK  
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Turing Machines 
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7.1 Introduction 

S  What is algorithm? What is computation? 

S  The algorithm was traditionally intuitively understood as a recipe, i.e., a finite list of  
directives written in some language that tells us how to solve a problem mechanically. In 
other words, the algorithm is a precisely described routine procedure that can be applied  
and systematically followed through to a solution of  a problem. 

S  Definition (algorithm intuitively) An ‘‘algorithm’’ for solving a problem is a finite set    
of  instructions that lead the processor, in a finite number of  steps, from the input data of  
the problem to the corresponding solution.  

S  Because there was no need to define the concept of  the algorithm formally, it remained 
firmly at the intuitive, informal level. 
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S  The need for a formal definition of  the concept of  algorithm was made clear during 
the first decades of  the 20th century as a result of  events taking place in mathematics.   
What happened? 

S  At the beginning of  the century, Cantor’s naive set theory was born. The theory 
was very promising as it offered a common foundation to all fields of  mathematics. 
But Cantor’s set theory treated infinity incautiously and boldly. This called for a 
response, which soon came in the form of  logical paradoxes.  

S  Since Cantor’s set theory was unable to eliminate them, formal logic was engaged. 
Three schools of  mathematical thought—intuitionism, logicism, and formalism—
contributed many important ideas and tools that enabled an exact and concise 
mathematical expression and brought rigor to mathematical research. 

S  Hilbert’s Program was a promising formalistic attempt to recover mathematics from 
paradoxes. Unfortunately, the program was severely shaken by Gödel’s astonishing 
discoveries about general properties of  formal axiomatic systems and their theories. 
So Hilbert’s attempt fell short of  formalists’ expectations.  

S  But the program left open a difficult question about the existence of  an algorithm 
for solving a certain problem---a question that led to the birth of  Computability Theory. 
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S  The difficulty in answering this question was:    How can we answer the question 
“Is there an algorithm that solves a given problem?” if  it is not clear what algorithm is?  

S  Namely:  
S  To prove that there exists an algorithm that solves the problem,                                                

it would suffice to construct some recipe that actually solves the problem.  

S  But to prove that such an algorithm does not exist                                                                      
we should reject every possible recipe by showing that it does not solve the problem.                                                      

But there are infinitely many possible recipes! How can we reject all of  them?                
Answer: To accomplish such a proof, we need a model of  computation, consisting of   

1.  a formal characterization of  the concept of the algorithm; that is, a formally defined property such that      
all algorithms and algorithms only have this property; 

2.  a formal definition of  a realistic environment capable of  executing (so characterized) algorithms.  

3.  a formal description of  the execution of  (so characterized) algorithms on the environment.  

Only by using a model of  computation we could systematically eliminate all the possible recipes.  

S  So the need for a model of  computation became apparent. Here is the definition 

Definition. (model of  computation) A model of  computation is a definition that formally 
characterizes the basic notions of  algorithmic computation, that is, the algorithm, its 
environment, and the computation.  
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S  In the 1930s the search for a model of  computation started and proceeded into different 
directions. Eventually, several models of  computation were proposed. Each direction 
proposed its own models of  computation. The models are: 

S  𝜇-recursive functions  (Kurt Gödel, Stephen Kleene) 
S  general recursive function (Jacques Herbrand, Kurt Gödel) 
S  𝜆-calculus (Alonzo Church) 
S  Turing machine (Alan Turing) 
S  Post machine (Emil Post) 
S  Markov algorithms (Andrej Markov) 

S  These models were completely different. Naturally, the following question arose:                    

         Which model (if  any) is the ‘‘best’’, i.e. the ‘‘right’’ one?          

The majority of  researchers accepted the Turing machine as the model which most  
adequately captures the basic concepts of  computation. 

S  Moreover, surprisingly, it was soon proved that the models are equivalent in the sense:  

          What can be computed by one can also be computed by the others. 
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S  What about the intuitive understanding of  the basic concepts of  computation?  

Is there any connection between the intuitively understood concepts of  computation           
(i.e. ‘‘algorithm’’, ‘‘computation’’ and ‘‘computable function’’) on the one hand,                 
and the formal models of  computation on the other? 

S  The answer is YES. Since all the known models of  computation were proved to be  
equivalent, although completely different, the following thesis was proposed:  

S  Computability Thesis (also called Church-Turing thesis).  The basic intuitive concepts 
of  computing are perfectly formalized as follows: 

S  ‘‘algorithm’’  is formalized by  Turing program 

S  ‘‘computation’’  is formalized by  execution of  a Turing program in a Turing machine 

S  ‘‘computable function’’  is formalized by  Turing-computable function 

S  The thesis was accepted by the majority of  researchers. Nowadays the thesis is widely 
accepted  (and no one succeeded to refute it). 
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     ☞                      ☞                     ☞ 

 

 
  
The Computability Thesis established a bridge between our intuitive understanding of  
the concepts of  the “algorithm,” “computation,” and “computability” on the one hand,      
and their formal counterparts defined by models of  computation on the other.                   
In this way it finally enabled a mathematical treatment of  these intuitive concepts. 



7.2 The Turing Machine Model 

S  The FAs and PDAs are somewhat limited: they can only read 
symbols in succession from left to right from bounded input tapes.   

S  The Turing machine (TM) also        
has a tape with a window and            
a control unit with a program.                       

S  But Turing machine can read         
and write symbols anywhere on        
the potentially infinite tape.  
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S  Definition. (Turing machine) The basic variant of  the Turing machine has 
the following components: a control unit containing a Turing program; a tape  
consisting of  cells; and a movable window over the tape, which is connected to 
the control unit. The details are: 

S  The tape is used for writing and reading the input data, intermediate data, and 
output data (results). It is divided into equally sized cells, and is potentially infinite in 
one direction (i.e., it can be extended in that direction with a finite number of cells).  

Each cell contains a tape symbol belonging to a tape alphabet 𝛤={z1, …, zt}, t ⩾ 3. 
The symbol zt is special, for it indicates that a cell is empty; for this reason it is 
denoted by ⨆ and called the empty space. In addition to ⨆ there are at least two  
additional symbols: 0 and 1. We will assume that z1 = 0 and z2 = 1. 

The input data are contained in the input word. This is a word over an input 
alphabet 𝛴, such that{0,1}⊆ 𝛴 ⊆ 𝛤-{⨆}. Initially, all the cells are empty (each 
contains ⨆) except for the leftmost cells, which contain the input word. 
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S  The control unit is always in some state from a finite set of  states Q = {q1, …, qs},     
s ⩾ 1. We call q1 the initial state. Some states are called final; they are gathered in the 
set F ⊆ Q. All the other states are non-final. If  the index of  a state is of  no 
importance, we use qyes and qno to refer to any final and non-final state, respectively.  

There is a Turing program (TP) in the control unit. TP directs TM’s components. 
TP is characteristic of  the particular TM, i.e., different TMs have different TPs.          
A TP is a partial function 𝛿: Q×𝛤→ Q×𝛤×{L,R,S}, called the transition function. 

           Note. The TM is by definition deterministic, having at most one choice for a move in each situation.  
  
We can view 𝛿 as a table Δ = Q×𝛤, where 
S  Δ[qi, zr] = (qj, zw, D)   if  𝛿(qi, zr) = (qj, zw, D) is an instr. of  𝛿,  

S  Δ[qi, zr] = 0  if  𝛿(qi , zr)↑(undefined).                          

Without loss of  generality, we can assume that there               
is always a transition from a qno, and none from qyes. 

S  The window can move over any cell. Then, the control unit can read a symbol 
through the window, and write a symbol through the window, substituting the 
previous symbol. In one step, the window can only move to the neighboring cell.  
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S  Before the TM is started, the following must take place: 
S  a.  an input word is written to the beginning of the tape; 
S  b.  the window is shifted to the beginning of  the tape; 
S  c.  the control unit is set to the initial state. 

S  From now on the TM operates independently, in a mechanical stepwise fashion as 
instructed by its TP. If  the TM is in a state qi ∊ Q and it reads a symbol zr ∊ 𝛤, then: 

 if  qi is a final state, then TM halts; 
 else, if  𝛿(qi, zr)↑ (i.e. TP has no next instruction), then the TM halts; 
 else, if  𝛿(qi, zr)↓= (qj, zw, D), then the TM does the following: 

a)  changes the state to qj ; 
b)  writes zw through the window;  
c)  moves the window to the next cell in direction D ∊ {L,R} (for left and right), or leaves 
       the window where it is (D = S, for stay). 

 

S  Formally, a TM is a seven-tuple T = (Q,𝛴,𝛤,𝛿,q1,⨆,F). To fix a particular TM, we must fix Q,𝛴,𝛤,𝛿,F.  
(end of definition) 

zr

qi qj �(qi , zr) = (qj , zw , R)

zw

 L     S     R            R
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S  Example. Here is a TM T that computes the sum m+n of natural numbers. The input 
data m,n are in the input word 1m

 01n; their sum is returned on the tape in the word 1m+n 
after T halts. E.g., given input word 111011, T returns the word 11111. 

S  Algorithm idea. If  the first symbol of  the input word is 1, then TM deletes it (instr.1), and then 
moves the window to the right over all the symbols 1 (instr.2) until the symbol 0 is read. TM 
then substitutes this symbol with 1 and halts (instr.3). But, if  the first symbol of  the input word 
is 0, then TM deletes it and halts (instr.4).  

S  Turing machine T.                              T’ s computation.                                   

        T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F), where: 
S  Q = {q1, q2, q3} 
S  𝛴 = {0,1} 

S  𝛤 = {0,1, ⨆} 
S  F = {q3} 

S  𝛿 has the following instructions: 
1.  𝛿(q1, 1) = (q2, ⨆, R)  

2.  𝛿(q2, 1) = (q2, 1, R)  
3.  𝛿(q2, 0) = (q3, 1, S)  

4.  𝛿(q1, 0) = (q3, ⨆, S)  
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S  Example. Here is another TM T’ that computes the sum m+n of natural numbers.  

S  Algorithm idea. First, the window is moved to the right until ⨆ is reached. Then the window is 
moved to the left (i.e., to the last symbol of  the input word) and the symbol is deleted. If  the 
deleted symbol is 0, the machine halts. Otherwise, the window keeps moving to the left and 
upon reading 0 the symbol 1 is written and the machine halts. 

S  Turing machine T’.                 T’ ’s computation.               

       T’ = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F), where: 
S  Q = {q1, q2, q3, q4, q5} 

S  𝛴 = {0,1}  𝛤 = {0,1, ⨆}  F = {q5} 
S  𝛿 has the following instructions: 

1.  𝛿(q1, 1) = (q2, 1, R)  
2.  𝛿(q1, 0) = (q2, 0, R)  

3.  𝛿(q2, 1) = (q2, 1, R)  
4.  𝛿(q2, 0) = (q2, 0, R) 

5.  𝛿(q2, ⨆) = (q3, ⨆, L)  
6.  𝛿(q3, 0) = (q5, ⨆, S) 

7.  𝛿(q3, 1) = (q4, ⨆, L) 
8.  𝛿(q4, 1) = (q4, 1, L)  

9.  𝛿(q4, 0) = (q5, 1, S)  
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S  Definitions.  
S  An instantaneous description (ID) of  a TM is the string I = 𝛼1q𝛼2 , if  the current 

configuration of  the TM is                ,where the window is over the first symbol of  𝛼2 
        and 𝛼2 ends at the rightmost non-blank symbol. 

              

 
An ID is the ``snapshot’’ of  a current configuration (status) of  TM’s components between successive instructions. 

S  An ID I  can directly change to J  -- written I  ⊢ J -- if  there is an instruction in TM’s 
program whose execution changes I  to J. The reflexive and transitive closure of  ⊢ is ⊢* ; 
if  I ⊢* J , then we say that ID I can change to J.  

S  Example. 

a

qi

 ��  ��

b c d fe g a

qj

b c fe gh

�(qi , d) = (qj , h, R)

I = abcqi defg J = abc hqj efgI ⊢ J

 ���� ����

q

 ��  ��

⨆ ⨆
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S  Example. Let us be given the following sequence of  `snapshots’ (situations) of  some 
Turing machine while the machine executes its program 𝛿: 

S  The computation is described by the following sequence of  ID’s (snapshots): 

          q1111011 ⊢ ⨆q211011 ⊢ ⨆1q21011 ⊢ ⨆11q2011 ⊢ ⨆11q3111  

 

 

 



7.3 Use of a Turing Machine 

There are three elementary tasks where TMs are used: 
 
S  Function computation 

       ``Given a function 𝜑 and arguments a1 ,…, ak , compute 𝜑(a1 ,…, ak ).’’ 

S  Set recognition 

       ``Given a set S and an object x, decide whether or not x ∊ S.’’ 

S  Set generation 

       ``Given a set S, generate a list x1, x2, x3 ,…  of  exactly the members of  S.’’ 
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S  Function computation on TMs. 

S  Each TM T induces, for any k ⩾ 1, a function 𝜑T  that maps k words into 1 word. 
We define 𝜑T  as follows. 
 

Definition. Let T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F ) be a TM and k ⩾ 1. The k-ary proper 
function of  T is a partial function 𝜑T : (𝛴*)k  → 𝛴*, defined as follows:  

   If  the input to T is k words u1,…, uk ∊ 𝛴*, then the value of  𝜑T  at u1,…,uk  
   is defined to be 
                                       v ,    if  T  halts ∧ returns on the tape the word v ∧ v ∊ 𝛴* ; 
          𝜑T  (u1,…, uk )  :=  

               ↑,   if T doesn’t halt ∨ the tape doesn’t have a word in 𝛴*. 

S  The interpretation of  u1,…,uk and v is arbitrary.          
E.g., if  we view u1,…,uk as encodings of  natural numbers a1,…,ak, then 𝜑T  can be 
viewed as an arithmetical function (Nk → N), and v as encoding of  the value 𝜑T (a1,…,ak). 

(
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S  In practice, however, we usually face the opposite task:  

    ``Given a k-ary function 𝜑 : (𝛴*)k →𝛴*, find a TM T that can compute 𝜑’s values.’’  
a 

        That is, given 𝜑, we must construct a TMT such that 𝜑T = 𝜑. 

S  The ability of  TMs (the extent to which THs can compute 𝜑’s values) depends on 𝜑. 
There are three kinds of  𝜑 that differ on how able (powerful) such a T can possibly be.     
Informally, we say that a given function 𝜑 is: 

S  computable if  there exists a T  that can compute 𝜑’s value for any argument; 

S  partial computable if  there is a T that can compute 𝜑’s value whenever 𝜑 is defined;  

S  incomputable  if  there is no T that can compute 𝜑’s value whenever 𝜑 is defined. 

Definition. Let  𝜑 : (𝛴*)k  → 𝛴* be a function. Then: 
S  𝜑 is computable if  ∃TM that can compute 𝜑 anywhere on dom(𝜑) ∧ dom(𝜑) = (𝛴*)k ; 
S  𝜑 is partial computable (p.c.) if  ∃TM that can compute 𝜑 anywhere on dom(𝜑) ; 
S  𝜑 is incomputable if  there is no TM that can compute 𝜑 anywhere on dom(𝜑) . 
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S  Set recognition on TMs. 

S  Each TM T induces a language L(T), the language accepted by T.      
Here is the definition. 
 

Definitions. Let T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F ) be a TM and w ∊ 𝛴* a string.         
We say that w is accepted by T  if  q1w ⊢* 𝛼1 p 𝛼2 , for some p ∊F and 𝛼1𝛼2 ∊𝛤*. 
The language accepted by T is the set L(T ) = {w|w ∊ 𝛴*∧w is accepted byT }. 

 

So, a word is accepted by T  if  it causes T to enter a final state (if  submitted as input). 
The language accepted by T consists of  exactly such words.  

S  The interpretation of  w is arbitrary.              
E.g., we may view w as encoding of  a natural number; then we view L(T ) as the 
set of  natural numbers that are accepted by T.  
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S  In reality, however, we usually face the opposite task:  

    ``Given a set S ⊆ 𝛴*, find a TM T that accepts S.’’  
a 

        That is, given a language (set) S, we must construct a TM T such that L(T ) = S.  

S  The ability of  TMs (the extent to which TMs can recognize members/non-members of  S) 
depends on S. There are 3 kinds of  S  that differ on how able (powerful) such a T can possibly be. 
Informally, we say that a set S is: 
S  decidable if  there exists a T  that can decide the question ``Is x ∊ S?’’  for any x;  
S  semi-decidable if  there exists a T that answers YES to ``Is x ∊ S?’’  if x is in S;  
S  undecidable if  there is no T that answers YES/NO to ``Is x ∊ S?’’, for any x ∊ 𝛴*. 

Definition. Let S ⊆ 𝛴* be a language (set). Then: 
S  S is decidable if  ∃TM that answers YES/NO to ``Is x ∊ S?’’,  for any x ∊ 𝛴*. 
S  S is semi-decidable if  ∃TM that answers YES to ``Is x ∊ S?’’ whenever x ∊ S. 
S  S is undecidable if  there is no TM that answers YES/NO to ``Is x ∊ S?’’, for any x ∊ 𝛴*. 
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S  It looks that for some sets S we cannot algorithmically decide the question ``Is x ∊S ?’’  

S  Why? 

If  S = L(T) is semi-decidable and x ∊ 𝛴* an arbitrary word, then: 
S  If  x is in S, then T will eventually halt on input x (and accept x).  
S  But, if  x is not in S, then T may not halt on input x. 

 
For such an S, as long as T is still running on input x, we cannot tell whether  

S  T will eventually halt (and accept/reject x) if  we let T run long enough, or  
S  T will run forever.  

 

In other words:  

S  If, in truth, x ∊ S, then T will (halt and accept x and) answer YES 

S  If, however, in truth, x ∉ S, then  
S  T may (halt and reject x and) answer NO; or 
S  T may (never halt and) never answer NO. 
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S  Set generation on TMs 

S  A TM T  (not every!) may induce a language G(T ), the language generated by T. 
Here is the definition. 

S  Definition. Let T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F ) be a TM. T is called a generator if  it 
writes to its tape, in succession and delimited by #, (some) words from 𝛴*.       
(We assume that # is in 𝛤- 𝛴.) The language generated by T is defined to be the set  
G(T ) = {w|w ∊ 𝛴*∧ T eventually writes w to the tape}. 

S  Example. The words c, a, b are in the generated language G(T ) = {c, a, b, …} 
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S  In practice, we usually face the opposite task: 

     ``Given a set S, generate a list x1, x2, x3 ,…  of  exactly the members of  S.’’ 
        That is, given a language (set) S, we must construct a TM T such that G(T) = S. 

S  Observation. Some sets can be generated and others cannot.  

Examples. The set N of  natural numbers can be generated by an obvious 
algorithm: 1, 2, 3, ... . Also the set Z of  integers can be generated by an 
obvious algorithm: 0, 1, -1, 2, -2, 3, -3, ... And also the set Q of  rational 
numbers can be generated. How? And the set P of  all primes too. How?             
But, the sets R of  all reals and the set of  reals in the interval [0,1] cannot. 

S  Questions: When can the elements of  a given set S be generated (listed in a 
sequence so that every element of  S eventually appears in the sequence)?               
When can the sequence be algorithmically generated, i.e., by a TM (algorithm)?    
Can every countable set be algorithmically generated? 
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S  C.E. languages (sets)  

S  Suppose that the elements of  a given set S can be listed in a sequence so that every element 
of  S eventually appears in the sequence. If  x is an arbitrary element of  S, then x will 
eventually  appear in the list; it will appear as nth in order, for some n ∊ N. So we can 
speak of  the 1st , 2nd, 3rd, … nth , ... element of  S. Because the elements of  S can be 
enumerated, we say that S is enumerable. 

S  We are interested in enumerable sets that can be algorithmically generated, i.e. generated 
(listed) by TMs. Such sets will be called computably enumerable.  Here is the definition. 
 

Definition. A set S is computably enumerable (c.e.) if  S = G(T ) for some TM T; 
that is, if  S can be generated by a Turing machine.  

S  Theorem. A set S  is c.e.  iff   S is semi-decidable. 

Proof. Omitted. (See my book) ⧠ 
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S  Summary. The relation between the classes of  languages that we have met 
until now is depicted below. We will prove later that semi-decidable and 
undecidable languages actually exist.  

regular sets

non-c.e. sets = undecidable sets

�*

CFL’s

decidable sets

c.e. sets = semi-decidable sets



7.4 Modifications of the Turing Machine 

S  One reason for the acceptance of  the TM as a general model of computation is that 
the basic model of  the TM is equivalent to many modified versions (that seem to 
have increased computing power). We’ll give informal proofs of  these equivalences. 
Each version has one or several of  the following modifications: 

S  Finite storage 

S  Multiple-track tape 

S  Two-way infinite tape 

S  Multiple tapes 

S  Multidimensional tape 

S  Nondeterministic program 

S  In this section we give informal proofs of  some of  these equivalence. 
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TM with finite storage.   

S  This variant V has in its control unit a finite storage capable of  memorizing          
k ⩾ 1 tape symbols and using them during the computation. The Turing 
program (TP) is the function 

S  Example. For k = 2 we have 

S  Although V seems to be more powerful than the basic model T, it is not so;     
T can compute anything that V can compute. We prove this by describing how 
T can simulate V. (The other way round is obvious as T is a special case of  V.) 

�V : Q⇥ �⇥ �k ! Q⇥ �⇥ {L,R, S}⇥ �k.
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TM with multiple-track tape.   

S  This variant V has the tape divided into tk ⩾ 2 tracks. On each track there are 
symbols from the alphabet 𝛤. The window displays tk-tuples of  symbols, one 
symbol for each track. The TP is             

S  Example.  For tk = 2 we have 

 

 

S  Although V seems to be more powerful than the basic model T, it is not so;     
T can compute anything that V can compute. We prove this by describing how 
T can simulate V. (The other way round is obvious as T is a special case of  V.) 

 

�V : Q⇥ �tk ! Q⇥ �tk ⇥ {L,R, S}.
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TM with two-way infinite tape.   

S  This variant V  has the tape unbounded in both directions. Formally, the TP is 
the function 

 

S  Although V seems to be more powerful than the basic model T, it is not so;     
T can compute anything that V can compute. We prove this by describing how 
T can simulate V. (The other way round is obvious as T is a special case of  V.) 

 

 

�V : Q⇥ � ! Q⇥ �⇥ {L,R, S}.
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TM with multiple tapes.   

S  This variant V has tp ⩾ 2 unbounded tapes. Each tape has its own window that 
is independent of  other windows. TP is                  

S  Example. For tp = 2 we have 

S  Although V seems to be more powerful than the basic model T, it is not so;       
T can compute anything that V can compute. We prove this by describing how 
T can simulate V. (The other way round is obvious as T is a special case of  V.) 

 

 

�V :Q⇥�tp!Q⇥(�⇥{L,R, S})tp.
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TM with multidimensional tape.   

S  This variant V has a d-dimensional tape, d ⩾ 2. The window can move in d  
dimensions, i.e., 2d directions L1, R1, L2, R2, …, Ld, Rd. The Turing program is 

              

S  Example. For d = 2 we have 

 

 

S  Although V seems to be more powerful than the basic model T, it is not so;     
T can compute anything that V can compute. We prove this by describing how 
T can simulate V. (The other way round is obvious as T is a special case of  V.) 

�V : Q⇥ � ! Q⇥ �⇥ {L1, R1, L2, R2, . . . , Ld, Rd, S}.
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TM with nondeterministic program.   

S  This variant V has a Turing program 𝛿 that assigns to each (qi, zr)  a finite set  
of  alternative transitions             The machine 
nondeterministically chooses a transition from the set and performs it.  

S  How does V choose a transition out of  the current alternatives? 

The following is assumed: the machine chooses a transition that leads it to a solution 
(e.g., to a state qyes ), if  such transitions exist; otherwise, the machine halts. 

The nondeterministic TM is not a reasonable model of  computation because it can foretell the future when 
choosing from alternative transitions. Nevertheless, it is a very useful tool, which makes it possible to define the 
minimum number of steps needed to compute the solution (when a solution exists). This is important when we 
investigate the computational complexity of problem solving. We will see that in the following chapters. 

S  Although V seems to be more powerful than the basic model T, it is not so;     
T can compute anything that V can compute. We prove this by describing how 
T can simulate V. (The other way round is obvious as T is a special case of  V.) 

{(qj1 , zw1 , D1), (qj2 , zw2 , D2), . . .}.
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S  The importance of the modifications of the TM.  

S  Are the modifications of  TM of  any use in Computability Theory ?             
The answer is yes.  The modifications are useful when we try to prove the existence of  a TM 
for solving a given problem P. Usually, the construction of  such a TM is easier if  we choose a 
more versatile modification of  TM. 

Sometimes, we can even avoid the complicated construction of  the actual TM for solving P.    
How?  We do as follows:  

1.  We devise an intuitive algorithm A (a ``recipe’’, finite list of  instr.) for solving P. 

2.  Then we say: ``By the Computability Thesis, there is a TM T that does the same as A.”  

Then, we can refer to this T (as the true algorithm for solving P ) and treat it mathematically. 

S  Since none of  the modifications is more powerful than the basic TM, this additionally 
supports our belief  that the Computability Thesis is true.  

S  The computations on the modifications of  TM can considerably differ in time (number of  steps) and 
space (number of  visited cells). But this will become important only in Computational Complexity 
Theory (where we will investigate the time and/or space complexity of  problem solving).  



7.5 Universal Turing Machine 

S  In this section we will describe how Turing discovered a seminal fact 
about Turing machines.                
We will: 
S  explain how TMs can be encoded (represented by words over an alphabet);  

S  realize that TMs can read codes of  other TMs and compute with them; 

S  explain how Turing applied this to construct the Universal Turing Machine 
(UTM), a special TM that can compute whatever is computable by any other TM.  

S  explain how Turing’s discovery triggered the search for a physical realization 
of  the UTM, which in 1940s resulted in the first general-purpose computers. 
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S  Coding of TMs 

S  Given a TM T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F ), we want to encode T, i.e. represent T by 
 a word over some coding alphabet.  

S  How will we encode TM T ? 
S  The coding alphabet will be {0,1}. 
S  We’ll only encode 𝛿, but in such a way that Q,𝛴,𝛤,F, which determine the particular T,  

can be restored from the encoded 𝛿. How will we encode TP 𝛿? 

      1.  If                             𝛿(qi , zj ) = (qk , zℓ , Dm )             is an instruction of  𝛿, 

       then we encode the instruction by the word  
                                 K = 0i10j10k10ℓ10m               where D1=L, D2=R, D3=S.  

      2.  In this way, we encode each instruction of  𝛿.  

      3.  From the obtained codes K1, K2, …, Kr we construct the code 〈𝛿〉 of  𝛿: 
             〈𝛿〉 = 111K111K211 … 11Kr111 

S  The code 〈T 〉 of  the TM T can now be identified with 〈𝛿〉 (i.e. 〈T 〉 :=  〈𝛿〉) . 
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S  Example.   

S  What is the code 〈T 〉 of  the first TM T that computes m+n  (see Sect.7.2)? 

S  The components of  T were: 
S  Q = {q1, q2, q3}    or encoded: Q = {0,00,000} 
S  𝛴 = {0,1} 
S  𝛤 = {0,1, ⨆}          or encoded:  𝛤 = {0,00,000}  (note: 0=z1, 1=z2, ⨆=z3) 
S  F = {q3}    

        The Turing program 𝛿 of  T had four instructions: 
1.  𝛿(q1, 1) = (q2, ⨆, R)    or encoded:    K1 = 01001001000100 
2.  𝛿(q2, 1) = (q2, 1, R)     or encoded:    K2 = 00100100100100 
3.  𝛿(q2, 0) = (q3, 1, S)     or encoded:    K3 = 001010001001000 
4.  𝛿(q1, 0) = (q3, ⨆, S)     or encoded:    K4 = 010100010001000 

       Then the code of  𝛿 is 
  〈𝛿〉 = 1110100100100010011001001001001001100101000100100011010100010001000111  
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S  Enumeration of TMs 

S  We can interpret 〈T 〉 as the binary code of some natural number. We call this 
number the index of  T. 

S  Example. The index of  the TM T for computing m+n (see previous example) is 
1331015301402912694716154818999989357232619946567. So, indexes are huge numbers.        
This will not be an obstacle, because we will not use them in arithmetic operations. 

S  Notice that some natural numbers are not indexes (because their binary codes do   
not have the required form/structure resulting from the encoding method).  

S To avoid this, we make the following convention:                 
Any natural number whose binary code is not of  the required form is an index of  the empty TM.  

   The 𝛿 of  this TM is everywhere undefined; hence, for every input, this TM immediately halts, in 0 steps. 

S  Now, we can say: Every natural number is the index of  exactly one TM. 
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S  Given an arbitrary natural number n ∊ N, we can restore n the components     
Q, 𝛴, 𝛤, F  that define the particular TM.  
S  How?  We (1) inspect the binary code of  n to check if  it is of  the required form 

111K111K211 … 11Kr111.  If  it is, we (2) partition this code into strings K1,K2,…,Kr   
and by analyzing these we can collect all the information needed to restore all the 
components 𝛿, Q, 𝛴, 𝛤, F of  the TM T. 

S  The restored TM can be viewed as the nth basic TM and be denoted by Tn .  

S  By letting n run through 0,1,2, … we obtain the sequence  

                                                        T0 ,T1 ,T2 , …   

      of  Turing machines. Notice that this is an enumeration of  all basic TMs. 
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S  The existence of a Universal Turing Machine 

S  In 1936, using the enumeration of  TMs, Turing discovered a seminal fact 
about TMs. We state his discovery in the following proposition. 

S  Proposition. There is a Turing machine that can compute whatever is 
computable by any other Turing machine. 

S  Proof idea. The idea is to construct a Turing machine U that will be capable 
of  simulating any other TM T. To achieve this, we use the method of  proving 
by Computability Thesis (CT): 

a)  first, we describe the concept of  the machine U and describe the intuitive algorithm 
(that should be) executed by U ’s Turing program, and 

b)  then we refer to CT to prove that U exists.  

(After this we can, if  we wish of  course, actually construct U in full detail.) 
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S  Proof.               
(a) The concept of  the machine U is depicted below. 

  

The control unit contains a Turing program            
that executes an algorithm, which is intuitively               
described on the next slide. 

The input tape contains an input 
word consisting of  two parts: the 
code 〈T 〉 of  an arbitrary Turing 
machine T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F ), 
and an arbitrary word w. 

The auxiliary tape is initially 
empty. The machine U will use it 
to record the current state in which 
T would be at that time, and for 
checking whether this state is a final 
state of  T.       

The work tape  is initially empty. 
The machine U will use it in exactly 
the same way as T would use its own 
tape when given the input w. 
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     The Turing program of  U should execute the following intuitive algorithm: 
1.  Check if  the input word is 〈T,w 〉, where 〈T 〉 is a code of  some TM.                                           

If  it is not, halt. 

2.  From 〈T 〉 restore F and write 〈q1, F 〉 to the auxiliary tape. 

3.  Copy w to the work tape and shift its window to the beginning. 

4.  // Let the auxiliary tape have 〈qi , F 〉 and the work tape window scan zr . 

If  qi  ∊ F,  halt.  //T would halt in the final state qi . 

5.  On the input tape, search in 〈T 〉 for the code of  the instruction 𝛿(qi , zr ) =… 

6.  If  not found, halt.   //T would halt in the non-final state qi . 

7.  // The instruction 𝛿(qi , zr ) =… was found and is 𝛿(qi , zr ) = (qj , zw , D).   

On the work tape, write the symbol zw  and move the window in direction D. 

8.  On the auxilliary tape, replace 〈qi , F 〉 by 〈qj , F 〉. 

9.  Return to step 4. 

S  (b)  This algorithm can be executed by a human. So, by the Computability Thesis, there  
        is a TM U =  (QU, 𝛴U, 𝛤U, 𝛿U, q1, ⨆, FU ) whose program 𝛿U executes this algorithm. 
       We call U the Universal Turing Machine (UTM).     
⧠ 
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S  Construction of an UTM 

S  The universal TM U was actually constructed (i.e. described in detail).  

S  It was to be expected that 〈U 〉 would be a huge sequence of  0s and 1s.  
S  Indeed, the code 〈U 〉 constructed by Penrose & Deutsch in 1989 had ≈ 5,500 bits. 

S  But there are other TMs (basic model) that are equivalent to U. 

S   So, there are other universal TMs (each differs from U  but does the same as U).  

S  What is the simplest UTM? 
S  We focus on UTMs with no storage and a single two-way infinite tape with one track.  

S  How shall we measure the `simplicity’ of  such UTMs? 

S  Shannon proposed the product |QU|·|𝛤U| (the maximal number of  instructions in 𝛿U );  

S  A more realistic measure would be the actual number of  instructions in 𝛿U.  
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S  Soon it became clear that there is a trade-off  between |QU| and |𝛤U|; that is,              
|QU| can be decreased  if  |𝛤U| is increased, and vice versa. 

S  So the researchers focused on different classes of  UTMs.  
S  Such a class is denoted by UTM(s,t), where s,t ⩾ 2, and by definition contains          

all UTMs with s states and t tape symbols. 

S  In 1996, Rogozhin (Rogožin) constructed UTMs in the classes  
S  UTM(2,18),  … the UTM with 2 states and 18 tape symbols 
S  UTM(3,10),  
S  UTM(4,6),  
S  UTM(5,5),  
S  UTM(7,4),  
S  UTM(10,3),   
S  UTM(24,2).   ... the UTM with 24 states and 2 tape symbols 

       Of  these, the U ∊ UTM(4,6) has the smallest number of  instructions: 22. 

S   But the search for even simpler UTMs continues. 
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S  The importance of the Universal Turing Machine 

S  Turing’s discovery of  a universal TM was a theoretical proof that                       
a general-purpose computing machine is possible, at least in principle.  

 

S  Turing was certain that such a machine could be built in reality: 

        It is possible to construct a physical computing machine that can 
compute whatever is computable by any other physical computing machine. 

       He envisaged something that is today called the general-purpose computer. 
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S  Practical consequences: General-purpose computer 

S  The construction of  a general-purpose computing machine started in the1940s. 
Researchers developed the first such machines, now called computers. 
S  For example, ENIAC, EDVAC, IAS. By the mid-1950s, a dozen other computers emerged. 

S  But, the development of  early computers did not closely follow the structure of  
the universal TM. The reasons for this were  

S  the desire for the efficiency of  the computing machine and  

S  the technological conditions of  the time.  
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S  If  we abstract the essential differences between these computers and the UTM,            
and describe the differences in terms of  TMs, we find the following: 

S  Cells are now enumerated. 
S  The program is written on the tape (instead of  the control unit) 
S  The control unit has: 

S  direct access to any cell in constant time (so there is no window). 
S  different duties. In each step, it typically does the following: 

1.  reads an instruction from a cell;  
2.  reads operands from cells;  
3.  executes the operation on the operands;  
4.  writes the result to a cell. 

S  new components: program counter (to point the cell with the next instruction to be read), 
registers (for the operands of  the operation), accumulator (for the result of  the operation). 

S  Due to these differences, terminological differences also arose: main memory (≈tape), program  
(≈Turing program), processor  (≈control unit), memory location  (≈cell), and memory address  (≈cell 
number). The general structure of  these computers was called the von Neumann architecture. 



7.6 The First Basic Results 

S  In the previous chapters we defined some of  the basic notions and concepts of  
the Computability Theory. In particular: 

S  We formally defined the notions of  algorithm, computation, and computable function;  

S  We defined a few new notions, such as the decidability and semi-decidability of  a set. 

S  We can now start using these notions and deduce the first theorems of  
Computability Theory.   

S  In this short section we will list several simple theorems about decidable and 
semi-decidable sets (which will play key roles in the next chapter). 
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S  Theorems.  

a)  S is decidable  ⟹ S is semi-decidable 

b)  S is decidable  ⟹     is decidable 

c)  S and     are semi-decidable  ⟹ S is decidable 

d)  A and B are  semi-decidable  ⟹ A ⋂ B  and A U B are semi-decidable 

e)  A and B are  decidable  ⟹  A ⋂ B  and A U B are decidable 

 

Proofs. Not difficult. Try it and just use definitions. ⧠ 

S  Here, we will omit the following important theorems:  

S  the Padding Lemma,  

S  the Parametrization (s-m-n) Theorem, and  

S  the Recursion (Fixed-Point) Theorem.  

S

S



7.7 Dictionary 

Turing machine Turingov stroj naive set theory naivna teorija množic paradox paradoks, protislovje   intuitionism 
intuicionizem logicism logicizem formalism formalizem Hilbert’s program Hilbertov program model of  computation  
računski model 𝜇-recursive function  𝜇-rekurzivna funkcija general recursive functions   splošno rekurzivna funkcija 𝜆-
calculus 𝜆-račun Post machine Postov stroj Markov algorithms algoritmi Markova, Markovski algoritmi 
computability thesis teza o izračunljivosti tape trak cell celica tape alphabet tračna abeceda empty space presledek 
input word vhodna beseda input alphabet vhodna abeceda control unit nadzorna enota state (initial, final) 
stanje(začetno, končno) Turing program Turingov program transition function funkcija prehodov window okno 
instantaneous description trenutni opis directly changes neposredno preide changes preide elementary task osnovna 
naloga function computation računanje (vrednosti) funkcij set recognition razpoznavanje množic set generation 
generiranje množic k-ary proper function k-mestna lastna funkcija computable function izračunljiva funkcija partial 
computable function parcialna izračunljiva funkcija  incomputable function neizračunljiva funkcija language accepted 
by jezik, ki ga sprejme decidable odločljiv semi-decidable polodločljiv undecidable neodločljiv to halt ustaviti se 
language generated by jezik, ki ga generira enumerable prešteven computably enumerable (c.e.) izračunljivo prešteven 
(c.e.) finite storage končni pomnilnik multiple-track večsledni two-way infinite dvosmerni multiple-tape večtračni 
multidimensional večdimenzionalni universal TM univerzalni TS coding kodiranje index indeks enumeration 
oštevilčenje general-purpose splošno namenski 
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8.1 Computational Problems 

S  In previous chapter we explained:  
S  how the values of  functions can be computed,  

S  how sets can be recognized, and  

S  how sets can be generated.  

All of  these are elementary computational tasks in the sense that 
they are all closely connected with the Turing machine. 

S  However, in practice we are confronted with other kinds of problems 
that require certain computations to yield their solutions.  All such 
problems we call computational problems. 
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S  Decision problems and other kinds of computational problems  

S  We define the following four kinds (classes) of  computational problems: 

S  Decision problems (also called yes/no problems). The solution of  a 
decision problem is the answer YES or NO  (The solution is a single bit.) 

S  Examples: Is there a prime number in a given set of  natural numbers?  

    Is there a Hamiltonian cycle in a given graph? 

S  Search problems. Given a set S and a property P, the solution of  the  
search problem is an element of  S such that the element has the property P.      
(The solution is an element of  a set.) 

S  Examples: Find the largest prime number in a given set of  natural numbers. 

    Find the shortest Hamiltonian cycle in a given weighted graph. 
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(cont’d) 

 

S  Counting problems. Given a set S and a property P, the solution of  a 
counting problem is the number of  elements of  S that have the property P. 
(The solution is a natural number.) 

S  Examples: How many prime numbers are in a given set of  natural numbers? 

    How many Hamiltonian cycles has a given graph? 

S  Generation problems (also called enumeration problems). Given a set S 
and a property P, the solution of  a generation problem is a list of  elements of  
S that have the property P.           
(The solution is a sequence of  elements of  a set.) 

S  Examples: List all the prime numbers in a given set of  natural numbers.  

    List all the Hamiltonian cycles of  a given graph. 
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S  Which of these kinds of problems should we focus on?  

S  Answer:  We will focus on the decision  problems.  
 

Why? Because the decision problems ask for the simplest possible solutions, i.e. 
solutions representable by a single bit. (We are pragmatic and hope that this 
will make our study of  other kinds of  computational problems simpler.) 

S  Warning: Our choice does not imply that other kinds of  computational 
problems are not interesting—on the contrary. We only want to postpone    
their treatment until the decision problems are better understood. 



8.2 Problem Solving 

S  Now the following question immediately arises:  
 

Can we use the accumulated knowledge  
about the three elementary computational tasks  
to solve other kinds of  computational problems?  

S  We will explain how this can be done for decision problems.       
In particular, we will  
1.   establish a link between sets (formal languages) and decision problems 

2.   and apply our knowledge about sets (formal languages) to decision problems. 
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S  Language of a decision problem. 

S  There is a link between decision problems and sets, which enables us to reduce the 
questions about decision problems to questions about sets. We uncover it in 4 steps.  
                                      
1.                                    Let D  be a decision problem. 

2.  We are usually faced with a particular instance d of  the problem D. The instance d is 
obtained from D by replacing the variables in the definition of  D with actual data. 
The problem D can be viewed as the set of all the possible instances of  D. We will say 
that an instance d ∊ D is positive/negative if  the answer to d is YES/NO, respectively. 

                                      
      So:                                Let d  be an instance of D. 

Example. Let DPrime = “Is n a prime number?” be a decision problem. If  we replace the 
variable n by actual data, say 4, we obtain the instance d1 = “Is 4 a prime number?” of  DPrime. 
This instance is negative because its solution is the answer NO. In contrast, since 2009 we 
know that the solution to d2 = “Is 243112609-1 a prime number?” is YES, so d2 is positive.     ⧠  
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3.  But how can we compute the answer to the instance d, say on a Turing machine?  
In the natural-language description of  d there can be various actual data (numbers, 
matrices, graphs, …). However, to compute the answer on a machine—be it an 
abstract model such as the TM or a modern computer—we must represent these       
actual data in a form that is understandable to the machine. How? 

Since any machine uses some alphabet 𝛴  (e.g. 𝛴 = {0, 1}), we must choose a 
function that will transform (code) every instance of D into a word in 𝛴*. We call such a 
function the coding function and denote it by ‘code’. Thus, code : D  → 𝛴*, and 
code(D) is the set of codes of all instances of D. We will write 〈d 〉 instead of  code(d).  

Example. The instances of  the problem DPrime= “Is n a prime number?” can be encoded 
by the function code : DPrime→{0,1}*  that maps a number n to its binary representation. 
For example, 〈“Is 4 a prime number?”〉 = 100 and 〈“Is 5 a prime number?”〉 = 101.      ⧠ 
  

So:                         Let code : D → 𝛴*  be a coding function. 
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4.  Now we could search for a TM that will compute the answer to d when given 〈d 〉.  
But, we will proceed differently! How? 

                 Gather the codes of all the positive instances of D  in a set L(D). 

       L(D) is a subset of  𝛴*, so it is a formal language. It is associated with the problem D.    

Here is its official definition.              

Definition. The language of  a decision problem D is the set L(D) which is defined 
by L(D) = {〈d 〉 ∊ 𝛴* |d is a positive instance of  D}.  

  

Example. The language of  the decision problem Dprime = “Is n a prime number?” is the 
set L(DPrime ) = {10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 110101, … }.           ⧠   

 

S   Now observe that the following relation holds: 

                                         d  ∊ D  is positive  ⟺  〈d 〉 ∊ L(D)        (❉) 

       This is the link between decision problems and sets (formal languages). 
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S  What did we gain by this?  The equivalence ❉ tells us that computing the answer 
to the instance d can be replaced with deciding whether or not 〈d 〉 is in L(D).        
That is:  

Solving a decision problem D can be reduced to recognizing the set L(D) in 𝛴*. 

 
 

                         
The answer to             
the instance d                       

of  D  

determine 
where is 〈d 〉 

relative to L(D) 
can be found if  we  
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S  The link ❉ is important because it enables us to apply---when solving decision 
problems---all the theory that we developed to recognize sets.  

S  Question: What does the recognizability of L(D) tell us about the solvability of D ? 

S  L(D) is decidable ⇒ There is an algorithm that, for any d ∊ D, answers YES or NO. 
Proof. There is a TM that, for any 〈d 〉 ∊ 𝛴*, decides whether or not 〈d 〉 ∊ L(D).  Then apply ❉.  ⧠ 

S  L(D) is semi-decidable ⇒ Then there is an algorithm that,  

S  for any positive d ∊ D, answers YES;   

S  for a negative d ∊ D, may or may not answer NO in finite time. 

Proof. There is a TM that, for any 〈d 〉 ∊ L(D), accepts 〈d 〉. However, if  〈d 〉 ∉ L(D), the algorithm                   
may or may not reject 〈d 〉 in finite time. Then apply ❉. ⧠ 

S  L(D) is undecidable ⇒ There is no algorithm that, for any d ∊ D, answers YES or NO. 
Proof. There is no TM capable deciding, for any 〈d 〉 ∊ 𝛴*,  whether or not 〈d 〉 ∊ L(D). Then apply ❉. ⧠ 
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S  We can now extend our terminology about sets to decision problems.  

Definition. Let D be a decision problem. We say that the problem 

S  D is decidable (or computable)           if  L(D) is a decidable set; 
S  D is semi-decidable                           if  L(D) is a semi-decidable set; 
S  D is undecidable (or incomputable)    if  L(D) is an undecidable set. 

S  Terminology. 

 
 

                         

Instead of  a decidable/undecidable problem 
we can say computable/incomputable 
problem. But the latter notion is more 
general: it can be used with all kinds of  
computational problems, not only decision 
problems. The terms solvable/unsolvable is 
even more general: it addresses all kinds 
of  computational and non-computational 
problems. 



8.3 There is an Incomputable Problem 
Halting Problem 

S  We now know what is a decidable, semi-decidable, or undecidable decision problem.   

S  But, we do not know whether there exists any semi-decidable (but not decidable) or 
any undecidable problem. How can we find such a D  (if  there is one at all)?  

S  In 1936, Turing succeeded in this. He was aware of  the fact that difficulties in 
obtaining computational results are caused by those TMs that may not halt.    
It would be beneficial, he thought, if  we could check, for any TM T and any input 
word w, whether or not T halts on w.   

S  If  such a checking were possible, then, given an arbitrary pair ⟨T,w⟩, we would first 
check ⟨T,w⟩ and then, depending on the outcome of  the checking, we would either 
start T on w, or try to improve T so that it would halt on w, too.  
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S  Halting Problem 

S  This led Turing to define a decision problem, called the Halting Problem.  

Definition. The Halting Problem  DHalt  is defined by 

              DHalt  = “Given a TM T and w ∊ 𝛴*, does T halt on w?” 
 

S  Then Turing proved the following theorem. 

Theorem. The Halting Problem DHalt  is undecidable.  
 

Comment. This means that there exists no algorithm capable of  answering,    
for arbitrary T and w, the question “Does T halt on w?”                                       
So, any algorithm whatsoever, which we might design now or in the future for 
answering this question, will fail to give the answer for at least one pair T, w.  
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S  Proof. 

S  Before we go to the proof, we introduce two sets that play an important role 
in the proof. These are called the universal and diagonal languages, respectively. 
 

Definition. The universal language, dented by K0, is the language of  the 
Halting Problem, that is, K0 = L(DHalt )  = { ⟨T, w⟩| T halts on w }.   

      The second language is obtained from K0 by imposing the restriction w :=⟨T ⟩. 

Definition. The diagonal language, dented by K, is defined by        
        K = { ⟨T, T ⟩| T halts on ⟨T ⟩ }.   

S  Note:  
S  K is the language of  the problem DH = “Given a TM T, does T halt on ⟨T ⟩?” 

S  DH is a subproblem of  DHalt  (since it is obtained from Dhalt by fixing w to w = ⟨T ⟩). 
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S  We now proceed to the proof.  
      The plan is:  

S  prove (in a lemma) that K is an undecidable set; 
S  this will imply that K0 is undecidable and, hence, Dhalt is an undecidable problem.  

 

S  The lemma is instructive; it applies a cunningly defined TM S to its own code ⟨S⟩. 

      Lemma. The set K is undecidable. 
Proof of the lemma. (The proof  is by contradiction).           

(★) Suppose that K is a decidable set.  
S  Then there must exist a TM DK that, for any T, answers ⟨T,T ⟩ ∊ ? K with answer 
                                                          YES ,  if  T  halts on ⟨T ⟩; 
                                DK (⟨T,T ⟩)  =  

                                 NO,   if  T  doesn’t halt on ⟨T ⟩. 
S  Now we construct a new TM S.             

Our intention is to construct S in such a way that, when given as input its own code ⟨S ⟩,    
S will expose the incapability of DK to predict whether or not S will halt on ⟨S ⟩. 

                

(
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         The TM S is: 

S  S operates as follows. The input to S is the code ⟨T ⟩ of  an arbitrary TM T. S doubles 
⟨T ⟩ into ⟨T,T ⟩, sends this to DK, and starts it. DK eventually halts on ⟨T,T ⟩ and 
answers either YES or NO to the question ⟨T,T ⟩ ∊ ? K. If  DK has answered YES, then 
S asks DK again the same question. If, however, DK has answered NO, then S outputs 
its own answer YES and halts.   

S  But S is shrewd: if  S is given as input its own code ⟨S ⟩, it puts the supposed DK in 
insurmountable trouble. Let us see why.  

Given the input ⟨S ⟩, S  doubles it into ⟨S,S ⟩ and hands it over to DK, which in finite 
time answers the question ⟨S,S ⟩ ∊ ? K with either YES or NO.  
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The consequences of  the answers to ⟨S,S ⟩ ∊ ? K are: 

a)   Suppose that DK has answered YES. Then S repeats the                    
question ⟨S,S ⟩∊ ?K to DK, which in turn repeats its        
answer DK (⟨S,S ⟩) = YES. So S cycles and will not halt.         
But, at the same time, DK repeatedly predicts just the          
opposite (that S will halt on ⟨S ⟩). So in (a) DK  fails to compute the correct answer. 

b)   Suppose that DK has answered NO. Then S returns to the environment its own 
answer and halts. But just before that DK has computed DK (⟨S,S ⟩) = NO and thus 
predicted that S will not halt on ⟨S ⟩. So, in the case ( b) DK  fails to compute the 
correct answer. 

Thus, DK is unable to correctly decide the question ⟨S,S ⟩ ∊ ? K. But this contradicts 
our supposition (★) that K is a decidable set and DK its decider. So K is not decidable.       

The lemma is proved. 

S  Since K is undecidable, so is the problem DH . But DH is a subproblem of  DHalt . 

      So the Halting Problem  Dhalt  is undecidable too. ⧠ 
 

 

                

S

S S



8.4 The Basic Kinds of Decision Problems 

S  Now we know that besides decidable problems there also exist 
undecidable problems.  

S  What about semi-decidable problems? Do they exist? Are there 
undecidable problems that are semi-decidable? That is, are there 
decision problems such that only their positive instances are 
guaranteed to be solvable? 

S  The answer is yes. In this section we explain why this is so. 
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S  The are undecidable sets that are still semi-decidable   

S  Theorem.  K0 is a semi-decidable set. 

Proof. We must find a TM that accepts K0 . Here is an idea. Given an arbitrary 
input ⟨T, w⟩, the machine must simulate T on w, and if  the simulation halts, the 
machine must return YES and halt. So, if  such a machine exists, it will answer YES 
iff  ⟨T,w ⟩ ∊ ? K0. But we already know that such a machine exists: it is the Universal 
Turing Machine U. Hence, K0 is semi-decidable. ⧠ 

Comment. This is why K0 is called the universal language. 
 

The last two theorems imply the following consequence:  

Corollary.  K0  is an undecidable (but still) semi-decidable set. 

S  Similarly we prove that K is an undecidable (but still) semi-decidable set. 
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S  The are undecidable sets that are not even semi-decidable  

S  What about the set       , the complement of K0 ? 

Theorem.       is not a semi-decidable set. 

Proof. If         were semi-decidable, then both K0 and       would be semi-decidable. 
But then K0 would be decidable (see Post’s theorem). This would be a 
contradiction. So       is not semi-decidable. ⧠ 

S  In the same way we prove that     is not a semi-decidable set. 

        

       Exercise. The decision problems corresponding to languages       and     are: 
S           = “Given a TM T  and a word w, does T never halt on w ?”  

S         = “Given a TM T, does T never halt on ⟨T ⟩ ?” 

 
 

K0

K0

K0

K0

K0

K

K0 K

D
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D
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S  The basic kinds of decision problems 

S  We have proved the existence of  undecidable semi-decidable sets (e.g. K0 and K ) 
and the existence of  undecidable sets that are not even semi-decidable (     and    ).   
Consequently, the class of  all sets partitions into three non-empty subclasses:  

 
                                                                                        

 

K0 K
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(cont’d)  

S  We can view sets as languages of  decision problems. For example, we know 
that K0 and K are the languages of  decision problems DHalt and DH, resp. 
What about the sets       and    ? These are the languages of  decision problems 

S             = “Given a TM T  and a word w, does T never halt on w ?” and  
S            = “Given a TM T, does T never halt on ⟨T ⟩ ?” 

S  The class of  all decision problems partitions into two non-empty subclasses:  
S  the class of  decidable problems and  
S  the class of  undecidable problems.               

 

 

 

 

There is also a third class, the class of  semi-decidable problems                   
(which contains all decidable problems and some, but not all, undecidable problems). 

          

K0 K
D
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(cont’d)  

S  In other words, a decision problem D can be of  one of  the 3 kinds: 

S  D is decidable.  

This means that there is an algorithm that can solve any instance d ∊ D. 
Such an algorithm is called the decider of  the problem D. 

S  D is semi-decidable undecidable.  

This means that no algorithm can solve any instance d ∊ D.  But there is an 
algorithm that can solve any positive d ∊ D.  It is called the recognizer of  D. 

S  D  is not semi-decidable.  

This means that for any algorithm there is a positive instance and a 
negative instance of  D such that the algorithm cannot solve either of  them. 
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S  Complementary sets and decision problems.  

S  From the previous theorems it follows that there are only three possibilities 
for the decidability of  a set S and its complement    : 
S  S and    are decidable (△▲, see figure below); 
S  S and    are undecidable; one is semi-decidable and the other is not (○●); 
S  S and    are undecidable and neither is semi-decidable (◻◼). 

 

S  The same holds for the decidability of  the corresponding decision problems: 

S
S

S

S



8.5 Some Other Incomputable Problems 

S  Are there any other incomputable problems? The answer is yes.  

S  Since the 1940s many other incomputable problems were discovered. The 
first of  these problems referred to the properties and the operations of  
models of  computation. After 1944, more realistic incomputable 
problems were (and are still being) discovered in different fields of  science 
and in other nonscientific fields.  

S  In this section we list some of  the known incomputable problems, 
grouped by the fields in which they occur.               
No algorithm can completely solve any of  the following problems. 
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S  Problems about algorithms and computer programs.  

S  TERMINATION OF ALGORITHMS  (PROGRAMS ) 

Let A be an arbitrary algorithm and d  be arbitrary input data. Questions: 

u  DTerm  = “Does A terminate on every input data?” 

u                “Does A terminate on input data d ?” 

S  CORRECTNESS OF ALGORITHMS  (PROGRAMS ) 

Let P be an arbitrary computational problem and A an arbitrary algorithm. Question: 

u  DCorr  = “Does the algorithm code(A) correctly solve the problem code(P)?” 

S  EXISTENCE OF SHORTER EQUIVALENT PROGRAMS 

Let code(A) be a program describing an algorithm A. Question: 

u   “Given a program code(A), is there a shorter equivalent program?” 
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S  Problems about programming languages and grammars 

S  AMBIGUITY OF CFG GRAMMARS 

 Let G be a context-free grammar. Question: 

u  “Is there a word that can be generated by G in two different ways?” 

S  EQUIVALENCE OF CFG GRAMMARS 

 Let G1 and G2  be CFGs. Question: 

u  “Do G1 and G2 generate the same language?” 

S  OTHER PROPERTIES OF CFG s AND CFL s 

Let G and G’ be arbitrary CFGs, and let C and R be an arbitrary CFL and a regular language, 
respectively. As usual, 𝛴 is the alphabet. Questions: 

u  “Is L(G) = 𝛴* ?”               “Is L(G) regular?”             “Is R ⊆ L(G)?” 

u  “Is L(G) = R?”                 “Is L(G) ⊆ L(G‘)?”           “Is L(G) ⋂ L(G’) = 0?” 

u  “Is L(G) ⋂ L(G’) CFL?”   “Is C ambiguous CFL?”    “Is there a palindrome in L(G)?” 
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S  Problems about computable functions 

S  INTRINSIC  PROPERTIES OF COMPUTABLE FUNTIONS  

Let 𝜑: A → B and 𝜓: A → B be arbitrary computable functions. Questions: 

u  “Is dom(𝜑) empty?”                

u  “Is  dom(𝜑) finite?”              

u  “Is dom(𝜑) infinite?” 

u  “Is A − dom(𝜑) finite?” 

u  “Is 𝜑 total?”                  

u  “Can 𝜑 be extended to a total computable function?”            

u  “Is 𝜑 surjective?” 

u  “Is 𝜑 defined at x?”    

u  “Is 𝜑 defined at x?”     

u  “Is 𝜑(x) = y for at least one x?” 

u  “Is dom(𝜑) = dom(𝜓)?” 

u  “Is 𝜑 = 𝜓?” 
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S  Problems from number theory, algebra, and analysis 

S  SOLVABILITY OF DIOPHANTINE EQUATUINS 

 Let p(x1, …, xn) be an arbitrary polynomial with unknowns x1,…,xn and rational coefficients. 
Question: 

u  “Does a Diophantine equation p(x1, …, xn) = 0 have a solution?” 

S  MORTAL MATRIX PROBLEM 

Let M be a finite set of  n × n matrices with integer entries. Question: 

u  “Can the matrices of  M be multiplied in some order, possibly with repetition,            
so that the product is zero matrix O ?” 

S  EXISTENCE OF ZEROS OF FUNCTIONS 

Let f : R → R be an arbitrary elementary function.  Question: 

u  “Is there a real solution to the equation f (x) = 0 ?” 

A function f (x) is elementary  if  it can be constructed from a finite number of  exponentials, logarithms, roots, real 
constants, and the variable x by using function composition and the four basic operations + , −, ×, and ÷. 
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S  Problems about games 

S  DOMINO TILING PROBLEM 

 Let T be a finite set of  tile templates, each with an unlimited number of  copies. Question: 

u  “Can every finite polygon be regularly T-tiled?” 

S  DOMINO SNAKE PROBLEM 

 Let T be a finite set of  tile templates and A, B, X arbitrary 1×1 squares in Z2. Question: 

u  “Is there a path between A and B which avoids X and can be regularly T-tiled?’’ 
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S  Post’s correspondence problem 

S  POST’S CORRESPONDENCE PROBLEM 

 Let C be a finite set of  card templates, each with an unlimited number of  copies. Question: 

u  “Is there a finite C-sequence such that U=L?” 
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S  Busy beaver problem 

S  Informally, a busy beaver is the most ‘productive’ TM of  its kind.  

S  What kind of  TMs do we mean?  

We mean TMs that do not waste time with writing symbols other than 1 or not 
moving the window.  Let us group such TMs into classes 𝓣n , n = 1,2,… 
where 𝓣n contains TMs with the same number of  states.  

Definition. Define 𝓣n  (for n ⩾ 1) to be the class of  all TMs that have:  
S  the tape unbounded in both ways;  
S  n non-final states (including q1) and one final state qn+1 ;  
S  𝛴 = {0,1} and 𝛤 = {0,1,⨆};  
S  𝛿 that writes only the symbol 1 and moves the window either to L or R.  

     Theorem. (Radó) For any n ⩾ 1, there are finitely many TMs in 𝓣n . 
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S  Definition. We say that a TM T ∊ 𝓣n is a stopper if  T halts on an empty input. 

      Theorem. (Radó) For every n ⩾ 1, there exists a stopper in 𝓣n .  

Hence there is at least one and at most finitely many (i.e. |𝓣n |) stoppers in 𝓣n . 

S  So, there must exist in 𝓣n  a stopper that attains, among all the stoppers in 𝓣n ,  
the maximum number of  1s that are left on the tape after halting.  

Definition. Such a stopper is called the n-state Busy Beaver and denoted n-BB. 

S  BUSY BEAVER PROBLEM 

 Let T ∊ Ui ⩾ 1 𝓣i  be an arbitrary TM.  Question: i  be an arbitrary TM.  Question: 

u  “Is T a Busy Beaver?”  (i.e. ``Is there n ⩾ 1, such that T = n-BB?’’) 

S  Definition The Busy Beaver function is s(n) = ‘the number of  1s attained by n-BB’. 

     Theorem. The Busy Beaver function is incomputable.  



8.6 Dictionary 

undecidability neodločljivost computational problems računski problemi decision problem odločitveni problem 
search problem problem iskanja, iskalni problem counting problem problem preštevanja generation problem problem 
generiranja language of  a decision problem jezik odločitvenega problema instance primerek problema, naloga coding 
function kodirna funkcija code koda decidable, semi-decidable, undecidable decision problem odločljiv, polodločljiv, 
neodločljiv odločitveni problem computable/incomputable problem izračunljiv/neizračunljiv problem solvable/
unsolvable problem rešljiv/nerešljiv problem halting problem problem ustavitve universal language univerzalni jezik 
diagonal language diagonalni jezik termination of  ustavljivost correctness pravilnost ambiguity dvoumnost intrinsic 
property vsebovana (naravna, bistvena) lastnost solvability of  Diophantine equations rešljivost Diofantskih enačb 
tiling problem problem tlakovanja Post’s correspondence problem Postov korespondenčni problem busy beaver 
problem problem garača stopper stroj, ki se ustavi (uspešnež?) 
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10.1 Introduction 

S  We were interested in                     
what can be computed          
and what cannot,               
regardless of  the amount           
of  computational resources                     
(time, space) needed for that. 

S  We discovered that                   
there are computable                     
and incomputable problems. 
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 incomputable
  problems

 computable 
problems

No algorithm can solve any of the 
incomputable problems in general.
There are infinitely many different 
degrees of incomputability. There 
is no most incomputable problem! 

Each computable problem has an 
algorithm that solves it. Intuition tells us: 
given more time/space, larger instances 
or more difficult problems can be solved.

               
How much time/space can we afford?



10.2 Deterministic time and space   
  (classes DTIME, DSPACE) 

S  Question: How much time or space does an algorithm need  
          to solve a (decidable) decision problem D ? 

S  Due to the link ❉ between decision problems and their languages  
we can express this question in terms of  formal languages:  

Question: How many steps or tape cells needs a TM               
          to recognize the language L(D) of  a decision problem D ? 

S  In this section we make these questions more exact. 
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S  Deterministic time complexity  &  complexity classes DTIME 

S  Definition. Let M = (Q,𝛴,𝛤,𝛿,q1,⨆,F ) be a DTM with k ⩾1 2-way infinite tapes. 
We say that DTM M has (det.) time complexity T(n)                                             
if, for every w ∊ 𝛴* of  length n, M makes ⩽ T(n) steps before halting. 

S  It is assumed that M reads all of w;  thus T(|w|) ⩾|w|+ 1, so T(n) ⩾ n + 1.                         
So T(n) is at least linear.  

S  A TM M of  time complexity T(n) can decide w ∊? L(M) in ⩽ T(|w|) steps.  

      This motivates the next definition. 
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(con’t) 

S  Definitions. A language L has (det.) time complexity T(n)                                   
if  there is a DTM M of  (det.) time complexity T(n) such that L = L(M).          
We define the class of  all such languages by 

      DTIME(T (n)) = {L|L is a language ∧ L has (det.) time complexity T (n)}  
         Informally, DTIME(T (n)) contains all Ls for which the problem w ∊? L can be det. solved in ⩽T (|⟨w ⟩|) time. 

S  Using the link ❉, we can restate both definitions in terms of  decision problems:  

Definitions. A decision problem D has (det.) time complexity T(n)                      
if  its language L(D) has (det.) time complexity T(n).          
We define the class of  all such decision problems by  

      DTIME(T(n)) = {D|D is a dec. prob. ∧ D has (det.) time complexity T (n)}  
       Informally, DTIME(T (n)) has all Ds whose instances d can be deterministically solved in  ⩽T (|⟨d ⟩|) time. 
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S  Deterministic space complexity  &  complexity classes DSPACE  
 

S  Definition. Let M = (Q,𝛴,𝛤,𝛿,q1,⨆,F ) be a DTM with 1 input tape and k ⩾1 work tapes. 
We say that DTM M has (det.) space complexity S(n)                                              
if, for every input w ∊ 𝛴* of  length n, M uses ⩽ S(n) cells on each work tape    
before halting. 

S  Note: input-tape cells do not count. 

S  It is assumed that M uses at least the cell under the initial position of  the window.        
So S(n) is at least constant function 1.  

S  A TM M of  space complexity S(n) can decide w ∊? L(M) on space ⩽ S(n). 

      This motivates the next definition. 
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(con’t) 

S  Definitions. A language L has (det.) space complexity S(n)                                   
if  there is a DTM M of (det.) space complexity S(n) such that L = L(M).         
We define the class of  all such languages by 

      DSPACE(S (n)) = {L|L is a language ∧ L has (det.) space complexity S (n)}  
         Informally, DSPACE(S (n)) contains all Ls for which the problem w ∊? L can be det. solved on ⩽ S(|w|) space.  

S  Again, using ❉ we can restate both definitions in terms of  decision problems: 

Definitions. A decision problem D has (det.) space complexity S(n)                      
if  its language L(D) has (det.) space complexity S(n).                          
We define the class of  all such decision problems by  

      DSPACE(S(n)) = {D|D is a dec. prob. ∧ D is of  (det.) space complexity S (n)}  
       Informally, DSPACE(S (n)) has all Ds whose instances d can be deterministically solved on ⩽ S (|⟨d ⟩|) space. 

 



10.3 Nondeterministic time and space 
(classes NTIME, NSPACE) 

S  Now suppose that we could use nondeterministic TMs (i.e. NTMs). 
Question: How many steps or tape cells would require a NTM       

         to recognize the language L(D) of  a decision problem D ? 

S  Stated in terms of  algorithms and decision problems: 
Question: How much time or space would require a non-det. algorithm     

            to solve a decision problem D ? 

S  We now make these questions more precise. 

Borut Robič, Computability & 
Computational Complexity 

280 



Borut Robič, Computability & 
Computational Complexity 

281 

S  Nondeterministic time complexity  &  complexity classes NTIME  

S  Definition. Let N = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F ) be a NTM.                                        
We say that NTM N is of  nondet. time complexity T(n)                                    
if, for every input w ∊ 𝛴* of  length n, there exists a computation          
in which N makes ⩽ T(n) steps before halting. 

S  Again, it is assumed that N reads all of  w;  thus T(|w|)⩾|w|+ 1, so T(n) ⩾ n + 1.     
So T(n) is at least a linear function.  

S  A NTM N of  time complexity T(n) can decide w ∊? L(M) in ⩽ T(|w|) steps.  

      This motivates the next definition. 
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(con’t) 

S  Definitions. A language L is of  nondet. time complexity T(n)                                
if  there is a NTM N of  nondet. time complexity T(n) such that L = L(N).       
The class of all such languages is 
      NTIME(T (n)) = {L|L is a language ∧ L has nondet. time complexity T (n)}  

       Informally, NTIME(T (n)) contains all Ls for which the problem w ∊? L can be nondet. solved in ⩽ T (|w|) time.  

S  Restating both definitions in terms of  decision problems we obtain:  

Definitions. A decision problem D is of nondet. time complexity T(n)                   
if  its language L(D) is of  nondet. time complexity T(n).                                     
We define the class of  all such decision problems by  

      NTIME(T(n)) = {D|D is a dec. prob. ∧ D is of  nondet. time complexity T (n)}  
       Informally, NTIME(T (n)) has all Ds whose instances d can be nondet. solved in ⩽ T (|⟨d ⟩|) time. 
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S  Nondeterministic space complexity & complexity classes NSPACE  

S  Definition. Let N = (Q,𝛴,𝛤,𝛿,q1,⨆,F ) be a NTM with 1 input tape and k ⩾1 work tapes. 
We say that NTM N is of  nondet. space complexity S(n)                                
if, for every input w ∊ 𝛴* of  length n, there exists a computation in which N uses, 
before halting, ⩽ S(n) cells on each work tape. 

S  Again, the input-tape cells do not count. 

S  It is assumed that M uses at least the cell under the initial position of  the window.        
So S(n) is at least constant function 1. 

S  A NTM N of  nondet. space complexity S(n) can decide w ∊? L(M) on ⩽ S(|w|) space.  

      This motivates the next definition. 
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(con’t) 

S  Definitions. A language L has nondet. space complexity S(n)                                
if  there is a NTM N of  nondet. space complexity S(n) such that L = L(M).       
The class of  all languages is                         
        NSPACE(S (n)) = {L|L is a language ∧ L is of  nondet. space complexity S (n)}  

         Informally, NSPACE(S (n)) has all Ls for which w ∊? L can be nondeterministically solved on ⩽ S (|w|) space.  

S  In terms of  decision problems: 

Definitions. A decision problem D has nondet. space complexity S(n)                   
if  its language L(D) has nondet. space complexity S(n).               
We define the class of  all such decision problems by  

        NSPACE(S(n)) = {D|D is a dec. prob. ∧ D has nondet. space complexity S(n)}  

         Informally, NSPACE(S (n)) has all Ds whose instances d can be nondet. solved on ⩽ S (|⟨d ⟩|) space. 
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S  Summary of complexity classes  

S  In terms of formal languages: 
DTIME(T (n))   = {L|L is a language ∧ L has time complexity T (n)}  
DSPACE(S (n)) = {L|L is a language ∧ L has space complexity S (n)}  
NTIME(T (n))   = {L|L is a language ∧ L has nondet. time complexity T (n)}  
NSPACE(S (n)) = {L|L is a language ∧ L has nondet. space complexity S (n)}  

S  In terms of decision problems: 
DTIME(T (n))   = {D|D is a decision problem ∧ L(D) has time complexity T (n)}  
DSPACE(S (n)) = {D|D is a decision problem ∧ L(D) has space complexity S (n)}  
NTIME(T (n))   = {D|D is a decision problem ∧ L(D) has nondet. time complexity T (n)}  
NSPACE(S (n)) = {D|D is a decision problem ∧ L(D) has nondet. space complexity S (n)} 

S  Informally: DTIME(T (n))  = {decision problems solvable        deterministically in time T(n)} 
                 DSPACE(S (n)) = {decision problems solvable     deterministically on space S(n)} 
                 NTIME(T (n))   = {decision problems solvable   nondeterministically in time T(n)} 
                 NSPACE(S (n)) = {decision problems solvable nondeterministically on space S(n)} 



10.4 Tape compression, linear speedup, and 
reductions in the number of tapes 

S  In this section we show that  
S  space complexity can always be reduced by a constant factor       

(by encoding several tape symbols into one); and 

S  time complexity can always be reduced by a constant factor        
(by grouping several steps into one)  

S  So, we we can ignore constant factors of  functions T(n), S(n) 
and focus on their rate of  growth. 
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S  Tape compression 

S  Motivation. We defined the space needed by a computation of  a TM to be the 
maximum number of  cells that are used on any work tape.       
Idea: Let is encode several symbols by one symbol from a larger alphabet.  
S  Example. Group 00110110 into 00 11 01 10, and encode each pair by a symbol from 

{0,1,2,3}, say by 00→0, 01→1, 10→2, 1→3. The result is a word 0312 with length 4. 

By expanding alphabets, we reduced the space. This holds in general.  

S  Theorem. If  L has space complexity S(n), then for any c > 0, L has space 
complexity c S(n).  This also holds for the nondet. space complexity. 

     Proof. Along the example in the motivation. ⧠  

S  Corollary: For any c > 0 is  DSPACE(S(n)) = DSPACE(cS(n))     

                                          and  NSPACE(S(n)) = NSPACE(cS(n)) 
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S  Linear speedup 

S  Can we do similarly with time? Idea: Since the time needed by a computation is 
the number of  steps made before halting, we group several steps into a new, larger step. 
To do similarly as with space, it turns out that two conditions must be fulfilled:  

S  TM must have at least 2 tapes (i.e. k>1),  

S   infn→∞T(n)/n = ∞ must hold. (Definition: infn→∞ f (n) = limn→∞ glb{f (n), f (n+1), …} 

Informally: T(n) must increase (at least slightly) faster than n. Only then there will remain, after 
reading the input, some time available for computation. 

S  Theorem. Let infn→∞T(n)/n = ∞ and k>1. Then:                 
If  L has time complexity T(n), then for any c > 0, L has time complexity cT(n).  
This also holds for the nondet. space complexity. 

S  Corollary: If  inf  T(n)/n = ∞, then for any c > 0         
                                 DTIME(T(n)) = DTIME(cT(n))     

                                       and  NTIME(T(n)) = NTIME(cT(n)) 
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S  Summary 

S  Under certain (but reasonable) conditions: 

DTIME(T(n)) = DTIME(cT(n))   

NTIME(T(n)) = NTIME(cT(n)) 

DSPACE(S(n)) = DSPACE(cS(n))     

NSPACE(S(n)) = NSPACE(cS(n)) 

S  Positive constants c have no impact on the contents of  the class. 
S  Example: DTIME(n2) = DTIME(0.33 n2) = DTIME(4n2) = DTIME(7n2) = …  

S  Instead of  writing that a decision problem D is in DTIME(n2),                           
we can say that D has (det.) time complexity of  the order O(n2).   
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S  Reductions in the number of tapes 

S  To study time complexity we use TMs with k ⩾1 tapes.                                  
Question: How does reduction of  the number k affect the time complexity? 
Answer: if  we restrict TMs to 1 tape, the time complexity may become squared, 
but if  we restrict them to 2 tapes, the loss of  time is smaller.                      
Theorem.  
S  If  L ∊ DTIME(T(n)), then L is accepted in time O(T 2(n)) by a 1-tape TM.                  

If  L ∊ NTIME(T(n)), then L is accepted in time O(T 2(n)) by a 1-tape NTM.                     
If  L ∊ DTIME(T(n)), then L is accepted in time O(T(n) logT(n)) by a 2-tape TM.                  
If  L ∊ NTIME(T(n)), then L is accepted in time O(T(n) logT(n)) by a 2-tape NTM. 

S  To study space complexity we use TMs with k ⩾1 work tapes and 1 input tape. 
Question: How does reduction in k affect the space complexity?          
Answer: The reduction of  tapes does not affect space complexity.                         
Theorem. If  L is accepted by a k-work-tape TM of  space complexity S(n), then L is 
accepted by a 1-work-tape TM of  space complexity S(n). 



10.5 Relations between      
 DTIME, DSPACE, NTIME, NSPACE 

S  What are inclusions (i.e. ⊆) between the introduced complexity classes?             
We are interested in the inclusions  

S  between the classes of  the same kind (e.g. DTIME(T(n)) with various T(n) ) 

S  between different classes (e.g. DTIME and NTIME with unspecified T(n) ) 
  

S  We will see that  
S  for each CLASS (of  the introduced classes) there is an infinite hierarchy 
                CLASS(f1(n)) ⊊ CLASS(f2(n)) ⊊ …  for some functions fi (n), i = 1, 2, … 

S  replacement of  a nondeterministic algorithm by a deterministic one causes at 
most exponential increase in time complexity and at most quadratic increase 
in space complexity. 
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S  Relations between complexity classes of the same kind  

S  Hierarchies, … 

THIS YEAR LEFT OUT. 
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S  Relations between different complexity classes 

S  The next theorem states the main inclusions between different classes.  

      Theorem.  

S  DTIME(T(n)) ⊆ DSPACE(T(n)) 
i.e. What can be solved in time O(T(n)), can also be solved on space O(T(n)). 

S   L ∊ DSPACE(S(n)) ∧ S(n) ⩾ log2 n  ⇒ ∃c : L ∊ DTIME(c 
S(n))  

i.e. What can be solved on space O(S(n)), can also be solved in (at most) time O(cS(n)). (Here c depends on L.) 

S   L ∊ NTIME (T(n)) ⇒ ∃c  : L ∊ DTIME(cT(n)) 
i.e. What can be solved nondeterministically in time O(T(n)), can be solved deterministically in (at most) time O(cT(n)). 
Consequently, the substitution of  a nondeterministic algorithm with a deterministic one causes at most exponential 
increase in the time required to solve a problem. 

S  NSPACE(S(n)) ⊆ DSPACE(S2(n)),  if  S(n) ⩾ log2 n ∧ S(n) is ``well-behaved.’’ 

i.e. What can be solved nondeterministically on space O(S(n)), can also be solved deterministically on space O(S2(n)). 
Consequently, the substitution of  a nondeterministic algorithm with a deterministic one causes at most  quadratic  
increase in the space required to solve a problem. 
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S  ``Well-behaved’’ complexity functions 

S  To avoid some pathological cases, we often use complexity functions S(n),T(n) 
that are ``well-behaved.’’ Below we define what ``well-behaved’’ means. 

S  Definition. A function S(n) is space constructible if  there is a TM M of  space 
complexity S(n), such that for each n, there exists an input of  length n on which 
M  uses exactly S(n) tape cells. If  for each n, M uses exactly S(n) cells on any 
input of  length n, then we say that S(n) is fully space constructible.  

S  Definition. A function T(n) is time constructible if  there is a TM M of  time 
complexity T(n), such that for each n, there exists an input of  length n on which 
M makes exactly T(n) moves. If  for all n, M makes exactly T(n) moves on any 
input of  length n, then we say that T(n) is fully time constructible. 

 

The sets of  space and time constructible functions are very rich and include all common 

functions. Moreover, most common functions are also fully space and fully time constructible.      



Borut Robič, Computability & 
Computational Complexity 

295 

S  Proofs. 

          THIS YEAR LEFT OUT. 

      ⧠ 



10.6 The classes P, NP, PSPACE, NPSPACE 

S  Of practical interest are the complexity classes  
S  DTIME(T(n)),  

S  NTIME(T(n)),  

S  DSPACE(S(n)),  

S  NSPACE(S(n)),  

 whose complexity functions T(n) and S(n) are polynomials. 
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S  Why polynomials? 

S  The requirements of  a computation for a computational resource (e.g. time, 
space) are considered to be reasonable if  they are bounded by some polynomial.  

S  The following table shows how exponential time complexity, such as T(n) = 2n  or T(n) = 3n , becomes 
unacceptably large even for modest values of  n (e.g. n>20). 

  T(n) 

    3n 0.059     sec  58         min 6.5      years 3855  centuries 2 ·108 centuries 1.3 ·1013 centuries 

    2n 0.001     sec 1.0         sec 17.9     min 12.7         days 35.7    years 366         centuries 

    n5 1            sec 3.2         sec 24.3       sec 1.7            min 5.2        min 13.0              min 

    n3 0.001     sec 0.008     sec 0.027     sec 0.064         sec 0.125     sec 0.216             sec 

    n2 0.0001   sec 0.0004   sec 0.0009   sec 0.0016       sec 0.0025   sec 0.0036           sec 

    n 0,00001 sec 0.00002 sec 0.00003 sec 0.00004     sec 0.00005 sec 0.00006         sec 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 
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S  P,  NP, PSPACE, NPSPACE 

S  Definition. Define the complexity classes P, NP, PSPACE and NPSPACE as: 

S  P = ∪i⩾1DTIME(ni )  
 is the class of  all decision problems solvable in polynomial time 

S  NP = ∪i⩾1NTIME(ni )  
     is the class of  all decision problems nondetermistically solvable in polynomial time 

S  PSPACE = ∪i⩾1DSPACE(ni ) 

               is the class of  all decision problems solvable on polynomial space 

S  NPSPACE = ∪i⩾1NSPACE (ni )  
                                 is the class of  all decision problems nondeterministically solvable on polynomial space 
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S  The basic relations (between P,  NP, PSPACE, NPSPACE) 

S  Theorem. The following inclusions hold: P ⊆ NP ⊆ PSPACE = NPSPACE 

      Proof.  

S  (P ⊆ NP) Every deterministic TM of  polynomial time complexity can be viewed as 
a (trivial) nondeterministic TM of  the same time complexity.  

S  (NP ⊆PSPACE) If  L ∊ NP, then∃k such that L ∊ NTIME(nk). So (by theorem)        
L ∊ NSPACE(nk), and hence (by Savitch) L ∊ DSPACE(n2k). Therefore L ∊ PSPACE. 

S  (PSPACE = NPSPACE) Clearly, PSPACE ⊆ NPSPACE. Now the other direction:  

NPSPACE =(def)= ∪ NSPACE(ni ) ⊆(by Savitch)⊆ ∪ DSPACE(n j ) ⊆ PSPACE.  

⧠ 



10.7 The question P =? NP  

S  We’ve just proved:     PSPACE = NPSPACE.                        
We can interpret this as follows:  

When space complexity is polynomial,                                                           
nondeterminism adds nothing to the computational power. 

S   Does similar hold for time too? (Recall: P ⊆NP.) 

                      So, is it:         P = NP ?  

         Or is it:         P ⊊ NP ? 

S  In spite of  intense research of  world’s most eminent researchers in 
the last decades, P =? NP remains open; it’s the main question of  TCS. 
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Why is P =? NP so important ? 

S  Many practically important decision problems are in NP. Each such problem D has 
a nondeterministic algorithm ND that solves D in nondeterministic polynomial time.  

S  But nondeterministic algorithms are unrealistic because no real computer can 
directly execute any of  them. (Indeed, how could a real computer always 
unmistakably make the right choice from several possible alternatives?) 

S  So, we must replace ND by an equivalent deterministic algorithm AD that    
computes the same result as ND by simulating each nondeterministic choice of  ND            
by a sequence of deterministic steps.   

S  Clearly, AD requires additional time (compared with ND) to obtain the same 
result. But, how much time in total does AD need to solve D?  
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S  Recall the theorem: L ∊ NTIME (T(n)) ⇒ ∃c  : L ∊ DTIME(cT(n)).  It tells us that 
the substitution of  a nondeterministic algorithm with a deterministic one may 
cause at most exponential increase in the time required to solve a problem. 

S  In our case, D ∊ NP, i.e. D ∊ NTIME(nk) for some k⩾1. So D ∊ DTIME(       ). 
Hence, D is deterministically solvable in       time.                  
In other words, AD requires at most O(      ) time to solve D. 

S  But, can AD, in spite of  the upper bound O(      ), solve D in deterministic polynomial time?  

S  If  so, is this true for any D ∊ NP?   This question is equivalent to ``Is P = NP?’’  

S  If  P = NP, then every D ∊ NP is deterministically solvable in polynomial time.                  
So the question ``Is P = NP?’’ can also be stated as follows:              

           Is it true that when time complexity is polynomial,                                                                 
     nondeterminism adds nothing to the computational power ?  

  

cn
k

cn
k
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k
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S  How to approach the question P =? NP ? 

S  The prevalent belief  is that P ⧧ NP (i.e. P ⊊ NP). 
  Why? Some consequences of  P = NP would be just too surprising. 

S  So we try to prove that P ⊊ NP.  

S  How?  An important method is:  

1.  find the ``most difficult’’ (i.e. ``hardest’’) problem in NP; 
2.  prove that this problem is not in P.  

The method is based on our intuition which suggests that  

S  if  there are any problems in NP−P,                           
then the ``most difficult’’ problem in NP is one of  them; 

S  it is easier to prove that this ``most difficult’’ problem in NP is not in P,   
than to prove that some other (``less difficult’’) problem in NP is not in P.  
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S  Problem reductions  

S  When is a problem the ``most difficult’’ in NP?  How do we define that? 
 Intuitively: A problem D* is the ``most difficult’’  in NP if  every D ∊ NP  is ``at most as difficult as’’  D*. 

S  Idea: Suppose that there existed a D * ∊ NP, such that we could ``easily’’ reduce 

every D ∊ NP to this D * in the following sense: 
S  there would exist a function r : D → D *  

S  that  could ``easily’’ transform any                            
instance d ∊ D  into an instance r (d) ∊ D * 

S  such that the solution s to r (d) could be      
``easily’’ transformed into the solution ``?’’ to d. 

Then, for every problem D, solving of  D could be ``easily’’ replaced by solving of  D *. 

S  If  this were possible, then every D could be viewed as ``at most as difficult as’’ D*. 
In another words, D* could be viewed as the ``most difficult’’ problem in NP. 
 

 

d∊D

r(d)∊D*

r 

SolutionsInstances

 s

 ?

solve
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S  Polynomial-time reductions  

S  But, we must still define what the term ``easily’’ should mean.  Let us define 
        ``easily’’ = ``in deterministic polynomial time’’ 

S  We are now ready to state the following 

Definition. A problem D ∊ NP is polynomial-time reducible to a problem D’,  
i.e. D ⩽p  D ’, if  there is a deterministic TM M of  polynomial time complexity 
that, for any d ∊ D, returns a d’ ∊ D’, such that d is positive ⟺ d’ is positive.       
The relation ⩽p  is called polynomial-time reduction.  
  So, M replaces, in polynomial time, d ∊ D with d ’ ∊ D ’ that has the same answer as d.       

 (M takes <d> and in poly. time returns a word M(<d>), where <d> ∊ L(D) ⟺ M(<d>) ∊ L(D ’). 

S  So, the ``most difficult’’ problem in NP can be any problem D* for which: 
S  D* ∊ NP 
S  D ⩽p  D*, for every D ∊ NP  

In the next section we will call such a problem NP-complete. 



10.8 NP-complete and NP-hard problems 

S  In this section we define the notion of  the NP-complete problem. 
Informally, this is just another naming for the ``the most difficult” 
problems in NP.  

S  We then show that there actually exists an NP-complete problem. 

S  Finally we describe, how NP-completeness of  other problems can 
be proved.  
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S  NP-complete and NP-hard problems 

S  We have seen that the ``most difficult’’ problem in NP could be defined as the 
problem D* that has the following property: 

S  D* ∊ NP 

S  D ⩽p  D*, for every D ∊ NP  

S  We now give the official definition of  such problems. 

Definitions. A problem D* is said to be NP-hard if  D ⩽p  D*, for every D ∊ NP. 

A problem D*  is said to be NP-complete  if   

S  D* ∊ NP 

S  D ⩽p  D*, for every D ∊ NP. 

S  Hence, D* is NP-complete if  D* is in NP and D* is NP-hard.  
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(cont’d) 

S  We can depict the NP-completeness and NP-hardness of  D* as follows: 

 

 

The dotted arrows represent polynomial-time reductions D ⩽p  D*.                             
Note:  an NP-hard D* may or may not be in NP. 
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S  An NP-complete problem, SAT 

S  Question. Is there any NP-complete problem? That is, does D* exist?         
Answer.   Yes, there are thousands of  them! The first such problem                  
was discovered independently by Cook and Levin. 

S  Definition. A Boolean expression is inductively defined as follows: 
S  Boolean variables x1, x2, … are Boolean expressions. 
S  If  E, F are Boolean expressions then so are ¬E,  E ⋁ F, and E ⋀ F. 

S  Definition. A Boolean expression E is satisfiable if  the variables of  E can be 
consistently replaced with values TRUE/FALSE so that E evaluates to TRUE. 

S  Definition. The problem SAT = ``Is a Boolean expression E satisfiable?’’ 
 SAT is called the Satisfiability Problem. 

S  Theorem (Cook-Levin). SAT is NP-complete. 
So, for D* we can take SAT.  
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S  Proof idea. 

S  THIS YEAR LEFT OUT 

S  ⧠ 
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S  Proving NP-completeness of problems 

S  Here are two theorems that we will need shortly: 

     Theorem. Let D ⩽p  D ’. Then 

S  D ’ ∊ P ⇒ D ∊ P  

S  D ’ ∊ NP ⇒ D ∊ NP.  

So, any problem D that can be ⩽p-reduced to a problem in P (or in NP), is also in P (or NP). 

S  Theorem. The relation ⩽p  is transitive. 

 In other words:  D ⩽p  D ’ ∧ D ’ ⩽p  D ’’ ⇒ D ⩽p  D ’’. 
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S  Corollary. The following holds: 
S  D* is NP-hard ∧ D* ⩽p  D✩    ⇒ D✩ is NP-hard 

S  D* is NP-complete ∧ D* ⩽p  D✩ ∧  D✩∊ NP   ⇒ D✩ is NP-complete 

S  Below we depict the method of  proving NP-hardness or NP-completeness of  D✩: 

 D
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S  Examples of  NP-complete problems 

S  In this way, several thousands of  problems have been proved NP-complete.        
Here are just three of  them. 

S  PARTITION 

Instance: A finite set A of  natural numbers. 

Question: Is there a subset B ⊆ A such that    

S  HAMILTONIAN CYCLE 

Instance: A graph G(V,E).  

Question: Is there a Hamiltonian cycle in G? 

S  BIN PACKING 

Instance: A finite set A of  natural numbers,  and natural numbers c and k.  

Question: Is there a partition of  U into disjoint sets  U1, U2, …, Uk such that the sum of  numbers            
    in each Ui is at most c? 

 

X

a2B

a =
X

a2A�B

a
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S  Summary. 

S  If  P ⧧ NP, then the situation in the class NP is depicted below: 

   Here: 
S  NPC is the class of  all NP-complete problems. 

S  NPI  is the class of  all NP-intermediate problems. What???? 

            Ladner has proved: If  P⧧NP, then there exists a problem in NP  
                      that is neither in P nor in NPC.   
            Such a problem is called NP-intermediate.   
               A candidate problem for NPI: Is a given natural number composite? 

 

 

 

If  P ⧧ NP, then no problem in NPC or NPI has polynomial time complexity. 

 

NP

If P ⧧ NP
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S  (cont’d) 

S  The problems in P are called tractable.                 
Other computable problems are intractable.                  

S  The exception are NPC and NPI,                    
because it is still not clear whether                
they are tractable or intractable. 

 incomputable
  problems

 computable 
problems

intractable                                 

P                             

NPC
 NPI

tractable                             

?                                 



10.9 Dictionary 

computational complexity računska zahtevnost computational resource računski vir (non)deterministic time 
complexity (ne)deterministična časovna zahtevnost complexity class razred zahtevnosti (non)deterministic space 
complexity (ne)deterministična prostorska zahtevnost tape compression stiskanje trakov linear speedup pohitritev 
reduction in the number of  tapes zmanjšanje števila trakov “well-behaved” function ,,lepa, pohlevna” funkcija space/
time constructible function prostorsko/časovno predstavljiva (ali verna) funkcija fully space/time constructible 
function popolnoma prostorsko/časovno predstavljiva (ali verna) funkcija polynomial polinom (non)deterministic 
polynomial time/space complexity (ne)deterministična polinomska časovna/prostorska zahtevnost hard/difficult 
problem težek problem problem reduction prevedba problema easy problem lahek problem polynomial-time reduction 
polinomska časovna prevedba logarithmic-space reduction logaritmična prostorska prevedba NP-complete problem 
NP-poln problem NP-hard problem NP-težek problem Boolean expression Boolov izraz satisfiable izpolnljiv  
satisfiability problem problem izpolnljivosti  NP-intermediate problem NP-vmesni problem (in)tractable 
(ne)obvladljiv 
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