
S

Izračunljivost in

računska zahtevnost

Computability and Computational Complexity

 Borut Robič

Faculty of Computer and Information Science
University of Ljubljana

Borut Robič
Computability & Computational Complexity

October 7, 2020

Lectures

S  Lectures in Slovenian

S  Slides in English (available at Ucilnica)

S  (slides in Slovenian to be completed and available soon)

Borut Robič, Computability &
Computational Complexity

2

Literature

S  These slides (are a combination of the following sources)

S  J.E.Hopcroft, J.D.Ullman. Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, 1st ed., 1979

S  S.Arora, B.Barak. Computational Complexity : A Modern Approach,
Cambridge University Press, 2009

S  B.Robič. O rešljivem, nerešljivem, obvladljivem in neobvladljivem

http://www.delo.si/znanje/znanost/o-resljivem-neresljivem-obvladljivem-in-neobvladljivem.html

S  B.Robič.The Foundations of Computability Theory, Springer, 2015
(2nd ed., Nov. 2020)

Borut Robič, Computability &
Computational Complexity

3

Contents

1 Preliminaries

2 Finite Automata and Regular Expressions

3 Properties of Regular Sets

4 Context-Free Grammars and Languages

5 Pushdown Automata

6 Properties of Context-Free Languages

Borut Robič, Computability &
Computational Complexity

4

 7 Turing Machines

 8 Undecidability

 9 (The Chomsky Hierarchy)

10 Computational Complexity Theory

11 Intractable Problems

12 (Coping With Intractable Problems)
 (Approximation, Probabilistic, Parallel, Quantum)

Dictionary

Finite automata končni avtomati/regular exspressions regularni izrazi/context/free grammars
kontekstno neodvisne gramatike/pushdown automata skladovni avtomati/context/free languages
kontekstno neodvisni jeziki/Turing machines Turingovi stroji/undecidability neodločljivost/
Chomsky hierarchy hierarhija Chomskega/computational complexity računska zahtevnost/
intractable problems neobvladljivi problemi/approximation algorithms aproksimacijski algoritmi/
probabilistic (or randomized) algorithms verjetnostni (ali naključnostni) algoritmi/parallel
algorithms vzporedni algorithmi/quantum algorithms kvantni algoritmi/

Borut Robič, Computability &
Computational Complexity

5

Exercises-Exams-Advices

Exercises
Teaching assistants: dr. Uroš Čibej, dr. Luka Fürst, Žiga Lesar

Exercises: from October 19 on.

Exams
The rules will soon appear at Učilnica.

An advice
There are about 300 slides of (relatively) difficult matter. How to succeed?

S  Recall basic math: logic (predicate calculus), sets, relations, functions.

S  Read the next 20 transparences in advance before the next lecture.

S  Try to understand them, prepare questions.

S  Attend the lecture, ask the questions.

S  Learn orderly.

S  Attend exercises, do homework, ask, be active.

Borut Robič, Computability &
Computational Complexity

6

Synopsis of the Course

Computer Science has two major areas:

1  Theoretical Computer Science (TCS), which investigates
the fundamental ideas and models underlying computing;

2  Practical/Engineering Computer Science, which is needed and/or
applied in the design of computing systems (hardware and software).

Borut Robič, Computability &
Computational Complexity

7

Borut Robič, Computability &
Computational Complexity

8

What are the goals of TCS? Who needs TCS?

S  The goal of TCS is to analyze and formalize
S  what engineers have done,

S  what engineers could do (at least in principle),

S  what engineers cannot do (in principle!).

Borut Robič, Computability &
Computational Complexity

9

How does TCS pursue its goals?

S  To achieve its goals,TCS:
S  mathematically models computation and computational problems;

S  solves computational problems algorithmically;

S  distinguishes what can be algorithmically solved from what cannot;

S  determines the necessary and sufficient resources (time, space, processors, …)
to algorithmically solve a given problem.

S  To carry this out, TCS uses various models of computation.

What is a model of computation?

S  Definition. A model of computation is a formal definition of
the basic notions of algorithmic computation. It rigorously defines
S  what is meant by the notion of the algorithm,

S  what is the environment required to execute the algorithm,

S  how the algorithm executes in this environment.

S  Models of computation enable us to use mathematics in TCS.
(So we can develop TCS in a rigorous way and avoid deceptive intuition.)

Borut Robič, Computability &
Computational Complexity

10

There are different kinds of models of computation. Why?

S  Because TCS has its roots in diverse fields of science:
S  Mathematics (problems in logic and foundations of math)

S  Linguistics (grammars for natural languages)

S  Electrical Engineering (switching theory in hardware design)

S  Biology (models of neuron nets)

S  Quantum Physics (quantum algorithms in quantum mechanics)

S  Out of these fields emerged various models of computation.

Borut Robič, Computability &

Computational Complexity
11

 Some models of computation are central to TCS. These are:
S  Finite Automata

S  Pushdown Automata

S  Turing Machines

Many other models of computation are also important:
S  two-way finite automata, Moore machines, Mealy machines, …

S  linear bounded automata, …

S  register machines (RAM, RASP), …

S  general recursive functions,λ-calculus,μ-recursive functions, Post machines, Markov algorithms

S  cellular automata (Game of Life), DNA-calculus, …

S  quantum Turing machines, …

Borut Robič, Computability &
Computational Complexity

12

S

1
Preliminaries

Borut Robič, Computability &
Computational Complexity

13

Contents

S  Propositional and Predicate calculus

S  Sets

S  Relations

S  Formal languages

S  Graphs

S  Proofs

Borut Robič, Computability &
Computational Complexity

14

1.1 Propositional and Predicate
Calculus

S  Propositional Calculus
S  Logical values: True ⟙, False ⊥
S  Logical variables: A, B, C, … , Z, a, b, c, … , z …. can have logical value
S  Logical connectives: ¬, ⋀, ⋁, ⇒, ⟺
S  Logical formulas: an example: a ⋀ b ⇒ a ⋁ b

S  Tautologies: an example: de Morgan’s law: ¬(a ⋀ b) ⟺ ¬a ⋁ ¬b

S  Predicate Calculus
S  Propositional Calculus
S  Predicates: P, Q, R, … can be true of false
S  Quantifiers: ∀, ∃ … forall, exists
S  Formulas: an example: ∀m∃n: P(m,n) … for every m there exists an n such that P(m,n) is true
S  Tautologies: an example: ¬[∀x: P(x)] ⟺ ∃x : ¬P(x)

Borut Robič, Computability &
Computational Complexity

15

1.2 Sets

S  A set is a collection of objects (members) without repetition.

S  Finite sets may be specified by listing their members between
brackets. Example. {0, 1} is a set; {a,b,c,d,e,f,g,h,i,j,k} is a set.

S  We also specify sets by set formers:

 or

S  Example. {i 2 N | there is integer j such that i = 2j}
{x 2 A |P (x)} . . . the set of x in A such that P (x) is true

{x |P (x)} . . . the set of objects x such that P (x) is true

Borut Robič, Computability &
Computational Complexity

16

{i 2 N | 9j(j 2 N) : i = 2j}

S  If every member of A is a member of B, then we write A⊆B
and say A is contained in B. B ⊇A is synonymous with A⊆B.

S  If A⊆B but A ≠ B, then we write A ⊊ B or A ⊂ B.
In this case we say that A is properly contained in B.

S  Sets A and B are equal if they have the same members.
That is, A=B iff A⊆B and B⊆A.
(Here, iff means ‘if and only if.’)

Borut Robič, Computability &
Computational Complexity

17

The usual operations on sets are:

S  A∪B, the union of A and B, is

S  A∩B, the intersection of A and B, is

S  A − B, the difference of A and B, is

S  A × B, the Cartesian product of A and B, is

S  2A, the power set of A, is
(The alternative notation for the power set of A is P(A).)

{x |x 2 A or x 2 B}

{x |x 2 A and x 2 B}

{x |x 2 A and x /2 B}

{(x, y) |x 2 A and y 2 B}

{X |X ✓ A}

Borut Robič, Computability &
Computational Complexity

18

S  Sets A and B have the same cardinality if there is a bijection f :A→B.
S  Finite sets:

S  If A is a finite set, then its cardinality is a natural number, which denotes
the number of its members.

S  If A,B are finite sets and A⊂B, then A and B have different cardinalities.

S  Infinite sets:
S  If A,B are infinite and A⊂B, then A and B may have the same cardinality!

Example. Let A = Even integers, and B = Integers. Although A⊂B, there is
a bijection f : A → B, namely f : i ⟼ i/2.

S  Not all infinite sets have the same cardinality. Example. . Sets
that can be injectively mapped into are countable or countably infinite.
Examples. and are countably infinite. The set 2 (of all subsets of)
and the set of all functions from to{0,1} have the same cardinality
as , so they are not countable.

N and R
N

Q ⌃⇤ N

R
Borut Robič, Computability &

Computational Complexity
19

N

N

1.3 Relations

S  A binary relation R is a set of pairs:

S  The first component of each pair is chosen from a set A called
the domain of R, and the second component of each pair is
chosen from a (possibly different) set B called the range of R.

S  When A and B are the same set S, we say the relation is on S.
If R is a relation and (a, b) is a pair in R, we often write aRb.

R = {(a, b) | a 2 A and b 2 B}

Borut Robič, Computability &
Computational Complexity

20

There are important properties of relations that a relation R on S
may or may not have. In particular, we say that a relation R on S is

S  reflexive if aRa for all ………………………………

S  irreflexive if aRa is false for all …………………

S  transitive if aRb and bRc imply aRc …

S  symmetric if aRb implies bRa …………………

S  asymmetric if aRb implies that bRa is false …

 Note: any asymmetric relation is irreflexive.
S  Example. Relation < on is transitive and asymmetric (so irreflexive).

a 2 S

a 2 S

Z

Borut Robič, Computability &
Computational Complexity

21

tj. 8a 2 S : aRa

tj. 8a 2 S : ¬(aRa)

tj. 8a, b, c 2 S : aRb ^ bRc) aRc

tj. 8a, b 2 S : aRb) bRa

tj. 8a, b 2 S : aRb) ¬(bRa)

A relation R that is reflexive, symmetric, and transitive is said to
be an equivalence relation.

S  An equivalence relation R on a set S partitions S into disjoint
nonempty equivalence classes

S  That is, ,where for every i and j ⧧ i :
S 

S  for each , aRb is true (i.e. aRb)

S  for each , aRb is false (i.e. ¬(aRb))

S  The sets Si are called equivalence classes.
Note: the number of equivalence classes may be infinite.

S = S1 [S2 [. . .

Si \ Sj = ;
a, b 2 Si

a 2 Si and b 2 Sj

Borut Robič, Computability &
Computational Complexity

22

S1, S2, . . .

Example.

S  Define the relation R on as follows: i R j iff i = j mod m.

S  R is an equivalence relation on . (Prove!)

S  Equivalence classes of R are:
S  = {…, -2m, -m, 0, m, 2m, ...}

S  = {…, -2m+1, -m+1, 1, m+1, 2m+1, ...}

 ⋮

S  = {…, -2m-1, -1 m-1, 2m-1, 3m-1, ...}

Z

Z

Borut Robič, Computability &
Computational Complexity

23

S0

S1

Sm�1

Let P be a set of (some) properties of relations. The P-closure of a
relation R is the smallest relation that contains R and has all the
properties in P. Examples:

S  Let P ={transitivity}. Then P-closure of a relation R is denoted by
R+, called the transitive closure of R, and defined by
1)  If aRb, then aR+b.
2)  If aR+b and bRc, then aR+c.
3)  Nothing is in R+ unless it so follows from 1) and 2).

Intuitively, R+ is the smallest transitive relation containing R. It is obtained from R by adding to R minimum number
of pairs so that the obtained set (called R+) is transitive.

S  Let P ={reflexivity, transitivity}. Then P-closure of a relation R is
denoted by R*, called the reflexive and transitive closure of R, and
defined by R* = R+∪{(a,a)|a ∊S}.

Borut Robič, Computability &

Computational Complexity
24

 1.4 Formal Languages

S  A symbol is an abstract entity that we shall not define formally.
Example. Letters and digits are frequently used symbols.

S  A string (or word) is a finite sequence of symbols juxtaposed.
Example. a, b, and c are symbols and abcb is a string.
The length of a string w, denoted |w|, is the number of symbols
composing w. E.g., abcb has length 4. The empty string,
denoted by ε, is the string consisting of zero symbols. So |ε|=0.

Borut Robič, Computability &
Computational Complexity

25

S  A prefix of a string is any number of leading symbols of that
string, and a suffix is any number of trailing symbols.
Example. abc has prefixes ε, a, ab, abc, and suffixes ε, c, bc, abc.
A prefix or suffix of a string, other than the string itself, is
called a proper prefix or suffix.

S  The concatenation of two strings is the string formed by writing
the first, followed by the second, with no intervening space.
Example. The concatenation of dog and house is doghouse.
Juxtaposition is used as the concatenation operator. That is, if
w and x are strings, then wx is the concatenation of these two
strings. The ε is the identity for the concatenation operator.
That is, εw = wε = w for each string w.

Borut Robič, Computability &
Computational Complexity

26

S  An alphabet is a finite set of symbols.

S  A (formal) language is a set of strings of symbols from some
alphabet. The empty set, , and the set consisting of the empty
string, {ε}, are languages. They are distinct.
S  Example. The set of palindromes (words that read the same in both

directions) over the alphabet {0, 1} is an infinite language. Some of its
members are ε, 0, 1, 00, 11, 010, 1101011.

S  Another language is the set of all strings over a fixed alphabet .
We denote this language by .
S  Example. If = {a}, then = {ε, a, aa, aaa, aaaa, . . .}.

If = {0,1}, then = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .}.

Borut Robič, Computability &
Computational Complexity

27

;

⌃
⌃⇤

⌃ ⌃⇤

⌃ ⌃⇤

1.5 Graphs

S  An undirected graph, denoted G = (V, E), consists of a finite
set V of vertices (or nodes) and a set E of pairs of vertices
called edges.
S  Example. V ={1,2,3,4,5}, E ={{n,m}|n+m = 4 or n+m = 7}.

S  A path in a graph is a sequence of vertices vl, v2, …, vk, k ≥1,
such that there is an edge {vi, vi+1} for each i, 1≤ i < k. The
length of the path is k--1. Example. 1, 3, 4 is a path in the
above graph; so is 5 by itself. If v1=vk, the path is a cycle.

3

1

4
25

Borut Robič, Computability &
Computational Complexity

28

S  A directed graph (or digraph), denoted G = (V, A), consists
of a finite set V of vertices and a set A of ordered pairs of
vertices called arcs. We also denote an arc (u,v) by u ➝ v.
S  Example.

S  A path in a digraph is a sequence of vertices vl, v2, …, vk,
k ≥1, such that vi ➝ vi+1 is an arc for each i, 1≤ i < k. We say
the path is from vl to vk. Example. l ➝ 2 ➝ 3 ➝ 4 is a path
from 1 to 4. If u ➝ v is an arc we say that u is a predecessor
of v (and v is a successor of u).

31 42

Borut Robič, Computability &
Computational Complexity

29

S  A tree is a digraph with the following properties:
S  1) There is exactly one vertex, called the root, that has no

 predecessors and from which there is a path to every vertex.

S  2) Each vertex other than the root has exactly one predecessor.

S  3) The successors of each vertex are ordered "from the left."

S  A successor of a vertex is called a son, and the predecessor is
called the father. If there is a path from vi to vj, then vi is said
to be ancestor of vj (and vj is a descendant of vi). A vertex
with no sons is a leaf, the other vertices are interior vertices.

Borut Robič, Computability &
Computational Complexity

30

Example.

3

1

4

2

5

6 7 8 9

10 11 12 13 14 15

16 17 18 19 20 21

A (directed) tree. root

leaf

leaves

father

son

Borut Robič, Computability &
Computational Complexity

31

1.6 Proofs

S  Many theorems are proved by mathematical induction.

S  The Principle of Mathematical Induction:
 Let P(n) be a statement (proposition) about a natural number n.
 Then:
 If P(0) holds and P(k-1) ⇒ P(k) holds for any k ≥ 1,
 then P(n) holds for every n ≥ 0.

S  P(0) is called the basis, P(k-1) is the inductive hypothesis, and
P(k-1) ⇒ P(k) is the inductive step.

Borut Robič, Computability &
Computational Complexity

32

Example. Proposition:

Basis [take n = 0 in P(n)]

Inductive hypothesis [suppose P(k-1) holds]

Inductive step [does P(k-1) ⇒ P(k) hold? Apply ind.hyp. to answer the question.]

k�1X

i=0

i2 =
(k � 1)k(2k � 1)

6
holds.

kX

i=0

i2 =
k�1X

i=0

i2 + k2
Ind.hyp.

=
(k � 1)k(2k � 1)

6
+ k2 = . . . =

k(k + 1)(2k + 1)

6

So, P (k) holds. Hence P (k � 1)) P (k) holds.

QED.

PROOF.

Borut Robič, Computability &
Computational Complexity

33

Conclusion: P(n) holds for every natural n.

P (n) ⌘
nX

i=0

i2 =
n(n+ 1)(2n+ 1)

6
0X

i=0

i2 = 0 =
0(0 + 1)(2 · 0 + 1)

6
. So P (0) holds.

1.7 Exercises

1. A palindrome can be defined as a string that reads the same forward and backward, or by the following
definition:

a) ε is a palindrome.
b) If a is any symbol, then the string a is a palindrome.
c) If a is any symbol and x is a palindrome, then axa is a palindrome.
d) Nothing is a palindrome unless it follows from (1, 2, 3).

 Prove by induction that the two definitions are equivalent.

2. The strings of balanced parentheses can be defined in at least two ways.

 A string w over alphabet {(,)} is balanced if and only if:

 1) a) w has an equal number of (‘s and)'s, and
 b) any prefix of w has at least as many (‘s as)'s.

 2) a) ε is balanced.
 b) If w is a balanced string, then (w) is balanced.
 c) If w and x are balanced strings, then so is wx
 d) Nothing else is a balanced string.

 Prove by induction on the length of a string that (1) and (2) define the same class of strings.

Borut Robič, Computability &
Computational Complexity

34

3. Show that the following are equivalence relations and give their equivalence classes.

 a) The relation R1 on integers defined by iR1j if and only if i = j.

 b) The relation R2 on people defined by pR2 q if and only if p and q were born at the

 same hour of the same day of some year.

 c) The same as (b) but "of the same year" instead of "of some year.”

4. Find the transitive closure, the reflexive and transitive closure, and the symmetric closure of the relation

 {(1,2), (2, 3), (3, 4), (5, 4)}

Borut Robič, Computability &
Computational Complexity

35

1.8 Dictionary

Symbol simbol letter črka digit števka string niz word beseda length dolžina empty string prazna
beseda prefix predpona suffix pripona proper pravi concatenation stik to juxtapose stakniti, pripeti
juxtaposition stik alphabet abeceda formal language formalni jezik palindrome palindrom graph graf
vertex, node vozlišče edge povezava path pot cycle cikel directed graph usmerjen graf predecessor
predhodnik successor naslednik tree drevo ancestor prednik descendant potomec leaf list interior
vertex notranje vozlišče mathematical induction matematična indukcija inductive hypothesis
induktivna hipoteza basis osnova inductive step korak indukcije, indukcijski korak set množica
member pripadnik, element contain vsebovati properly contain strogo vsebovati equal enak operation
operacija union unija intersection presek difference razlika Cartesian product kartezični produkt
power set potenčna množica cardinality moč countable števna countably infinite števno neskončna
binary relation binarna relacija domain domena range zaloga vrednosti reflexive refleksivna
irreflexive irefleksivna transitive tranzitivna symmetric simetrična asymmetric asimetrična
equivalence relation ekvivalenčna relacija partition razbitje, razdelitev equivalence class ekvivalenčni
razred transitive closure tranzitivna ovojnica (tr. zaprtje) reflexive and transitive closure refleksivna
tranzitivna ovojnica (refl. tr. zaprtje) model of computation računski model finite automaton končni
avtomat regular expression regularni izraz pushdown automaton skladovni avtomat context-free
grammar kontekstno neodvisna gramatika Turing machine Turingov stroj intractable (or hard)
problem neobvladljiv (oz. težek) problem

Borut Robič, Computability &

Computational Complexity
36

S

2
Finite Automata

and Regular Expressions

Borut Robič, Computability &
Computational Complexity

37

Contents

S  Finite state systems

S  Deterministic finite automata, DFA

S  Nondeterministic finite automata, NFA

S  The equivalence of NFA and DFA

S  Finite automata with ℇ-moves

S  Equivalence of NFA with and without ℇ-moves

Borut Robič, Computability &
Computational Complexity

38

 2.1 Finite State Systems

S  A finite state system (FSS) is an object that can read
discrete inputs and can be in any one of a finitely many
states (i.e., internal configurations).
S  The state summarizes the information (concerning past inputs) that is

needed to determine the behavior of the system on subsequent inputs.

The finite automaton is a mathematical model of a FSS.

Borut Robič, Computability &
Computational Complexity

39

S  Examples. There are many examples of FSSs in CS.

S  Switching circuits (e.g., computer’s CPU).
S  A switching circuit consists of a finite number of gates, each of which can be in one of two conditions, 0

and 1 (different voltage levels at the gate output).

S  The state of a circuit with n gates can be any one of 2n assignments of 0 or 1 to the gates.

S  (Comment. The circuitry is so designed that only the two voltages corresponding to 0 and 1 are stable;
other voltages immediately adjust themselves to one of these voltages. Switching circuits are
intentionally designed in this way, so that they can be viewed as FSSs, thereby separating the logical design of
a computer from the electronic implementation.)

S  Certain programs (e.g., text editors and lexical analyzers)
S  A lexical analyzer scans the symbols of a computer program to locate the strings of characters

corresponding to identifiers, numerical constants, reserved words, and so on. In this process the lexical
analyzer needs to remember only a finite amount of information (e.g., the length of a prefix of a reserved
word that has seen since startup).

S  The theory of finite automata is used in the design of such FSSs.

Borut Robič, Computability &
Computational Complexity

40

Caveat.

S  Later we will see that Finite Automaton is a model of computation that
does not completely capture the intuitive notion of computation.

S  Why? To properly capture the intuitive notion of computation we need
a potentially infinite memory (even though each real computer is finite).
Such a model of computation will be, for example, the Turing Machine.

Borut Robič, Computability &
Computational Complexity

41

 2.2 Deterministic Finite Automata

S  A deterministic finite automaton (DFA) consists of
S  a finite set of states and

S  a finite set of transitions from state to state
that occur on reading symbols from an input alphabet (e.g.,).

S  For each input symbol there is exactly one transition out of each state.

S  One state, denoted q0 , is the initial state. DFA starts in q0.

S  Some states are designated as final (or accepting) states.

S  We say that a DFA accepts a word x if the sequence of transitions corresponding to
the symbols of x leads from the initial state q0 to an accepting state.

Borut Robič, Computability &
Computational Complexity

42

⌃

Borut Robič, Computability &
Computational Complexity

43

S  A DFA is associated with a transition diagram (digraph)
whose
S  vertices correspond to the states of the DFA.

S  arcs correspond to transitions: there is an arc qi → qj
if DFA moves from state qi to state qj on reading input symbol a.

q1q0

q3q2

Start

q0 is the initial state. Final states are in double circles (here q0).

1

1

1

1
00

00

Example.

a

Borut Robič, Computability &
Computational Complexity

44

S  Definition. A deterministic finite automaton (DFA)
is a 5-tuple where:
S  is a finite set of states,

S  is a finite input alphabet,

S  is the initial state,

S  is the set of final states, and

S  is the transition function, i.e. .
 That is, is a state (for each state q and input symbol a).

S  Note: is the program of DFA. Every DFA has its own, specific .

(Q,⌃, �, q0, F)

Q

⌃

�
�(q, a)

q0 2 Q

F ✓ Q

� : Q⇥ ⌃ ! Q

� �

Borut Robič, Computability &
Computational Complexity

45

S  We view a DFA as consisting of a control unit that reads
input word () from a tape, and during this changes its state.

S  If it is in state q and reads symbol a, then the DFA, in one move,
S  1) enters the next state which is 𝛿(q, a),

S  2) shifts its window one symbol to the right.

S  If 𝛿(q, a) is an accepting state, the DFA has accepted the prefix of the input word up to (not
including) the current position of the window. A DFA may accept several prefixes. If the
window has moved off the right end of the input word, DFA accepts the entire word.

tape

control unitq

0 1 1 0 0 1 0 1

window

2⌃⇤

Borut Robič, Computability &
Computational Complexity

46

S  It is useful to extend 𝛿 so that it can be applied to a state and a
string (not just one symbol).

S  We define a function so that is the state
in which DFA is after reading x starting in state q. So is the
state p such that there is a path in the diagram from q to p, labeled x.

S  The extended transition function is defined recursively:
S 

S  , for all strings w and input symbols a

S  Since (prove!) there can be no disagreement
between and . So, for convenience we will write instead of .

�̂(q, ") = q

�̂(q, wa) = �(�̂(q, w), a)

�̂

�̂ : Q⇥ ⌃⇤ ! Q

�̂(q, a) = �(q, a)
�̂�� �̂

�̂(q, x)
�̂(q, x)

q prw a

Borut Robič, Computability &
Computational Complexity

47

S  Definitions.
S  A string x is said to be accepted by a DFA

if for some .

S  The language accepted by a DFA M is defined as the set

S  A language is said to be a regular set (or just regular)
if it is accepted by some DFA (i.e. if it is L(M) for some DFA M).

(Q,⌃, �, q0, F)M =
�(q0, x) = p p 2 F

L(M) = {x 2 ⌃⇤ | �(q0, x) 2 F}

Borut Robič, Computability &
Computational Complexity

48

S  This is the transition diagram of , where

q1q0

q3q2

Start

q0 is the initial state. Final states are in double circles (here q0).

1

1

1

1
00

00

Example.

M = (Q,⌃, �, q0, F)

Q = {q0, q1, q2, q3}
⌃ = {0, 1}
F = {q0}

� 0 1
q0 | q2 q1
q1 | q3 q0
q2 | q0 q3
q3 | q1 q2

Borut Robič, Computability &
Computational Complexity

49

S  Suppose that x = 110101 is input to M. Is x ∊ L(M) ?
S  We must compute the state

S 

q1q0

q3q2

Start

q0 is the initial state. Final states are in double circles (here q0).

1

1

1

1
00

00

Example (cont’d).
� 0 1

q0 | q2 q1
q1 | q3 q0
q2 | q0 q3
q3 | q1 q2

�(q0, 110101)
= �(q1, 10101)
= �(q0, 0101)
= �(q2, 101)
= �(q3, 01)
= �(q1, 1) = q0 2 F

�(q0, x) = �(q0, 110101).

Borut Robič, Computability &
Computational Complexity

50

S  Computation of M on x = 110101.

Example (cont’d).

� 0 1
q0 | q2 q1
q1 | q3 q0
q2 | q0 q3
q3 | q1 q2

q0

1 1 0 1 0 1

1 1 10 0 1

1 10 0 11

1 10 0 1

1 0 1 0 1 10 0 1

1 10 0 1

q1

q0

q2

q3

q1 q0

1

1

1 0 1

 2.3 Nondeterministic Finite Automata

S  A nondeterministic finite automaton (NFA) is obtained from
DFA by allowing zero, one or more transitions from a state on
the same input symbol; e.g.,

S  An input word is accepted by a NFA if there
exists a sequence of transitions, corresponding to the input
word, that leads from the initial state to some final state.

S  Thus in a DFA, for a given input string w and state q, there will be exactly one path
labeled w starting at q. To determine if a string is accepted by a DFA it suffices to
check this one path. In contrast, for an NFA there may be many paths labeled w, and
in the worst case all must be checked to see if at least one ends in a final state.

Borut Robič, Computability &
Computational Complexity

51

a1a2 · · · an

q2q0 q3q1
0

10
1

1
0

Borut Robič, Computability &
Computational Complexity

52

S  Nondeterminism.

S  Question: Given an input word , who decides whether or not
there exists a sequence of transitions leading from initial to some final state?
Answer: NFA itself!

S  Question: How does NFA do that?
Answer: The NFA is not a realistic model of computation: it is assumed that
NFA can always guess right. That is, it is assumed that NFA has the magic
capability of choosing, from any given set of options, the right option, i.e. the
option that leads to a success (if such an option exists; otherwise, NFA halts).

In particular, if there are several transitions from a state on the same input symbol, the NFA
can immediately choose the one (if there is such) which eventually leads to some final state.

S  This capability of prediction makes NFA unrealistic.

a1a2 · · · an

Borut Robič, Computability &
Computational Complexity

53

S  Nondeterminism (cont’d).

S  Question: If NFA is unrealistic, who needs it?
Answers:
S  NFA (and other nondeterministic models that we will see later) can be used to find

lower bounds on the time required to solve computational problems. The reasoning
is as follows: If a problem P requires time T to be solved by a nondeterministic
model M, then solving this problem on any deterministic version D of the model M
must require at least time T (because D lacks the ability of prediction).

 We will use this in chapters on Computational Complexity.

S  Often it is much easier to design a NFA (or some other nondeterministic model) for a
given problem P. We then try to construct an equivalent deterministic version
(equivalent in the sense that it solves P too, regardless of the time needed).

 We will see this soon.

Borut Robič, Computability &
Computational Complexity

54

S  Definition. A nondeterministic finite automaton (NFA)
is a 5-tuple ,where:
S  is a finite set of states,

S  is a finite input alphabet,

S  is the initial state,

S  is the set of final states, and ☟

S  is the transition function, i.e., .

 That is, is the set of all states p such that there is a
 transition labeled a from q to p.

S  Note: is the program of NFA. Every NFA has its own specific .

(Q,⌃, �, q0, F)

Q

⌃

�
�(q, a)

q0 2 Q

F ✓ Q

� : Q⇥ ⌃ ! 2Q

� �

Borut Robič, Computability &
Computational Complexity

55

S  This is the transition diagram of NFA ,
where

Example.

M = (Q,⌃, �, q0, F)

⌃ = {0, 1}

�

q3q0 q4

q1

Start
0,11

00

q2

1
0,1

0,1

Q = {q0, q1, q2, q3, q4}

F = {q2, q4}

0 1
q0 | {q0, q3} {q0, q1}
q1 | ; {q2}
q2 | {q2} {q2}
q3 | {q4} ;
q4 | {q4} {q4}

Borut Robič, Computability &
Computational Complexity

56

S  We view a NFA similarly to DFA. It also reads an input tape,
but the control unit at any time can be in any number of states.

S  When a choice of the next state can be made, we may imagine that duplicate copies of the
automaton are made. For each possible next state there is one copy of the automaton whose
control unit is in that state. Example. if , we imagine three copies:

S  We imagine that each of the copies continues execution independently of the others in
the same fashion. The imaginary parallel computation is described by the execution tree.

�(qi, 1) = {qj , qk, q`}

tape

control unitqj

0 1 1 0 0 1 0 1

window

tape

control unitqk

0 1 1 0 0 1 0 1

window

tape

control unitq�

0 1 1 0 0 1 0 1

window

tape

control unit…, qi ,…

0 1 1 0 0 1 0 1

window

Borut Robič, Computability &
Computational Complexity

57

S  To describe the behavior of a NFA on a string, we extend 𝛿 to
apply to a state and a string (not just a symbol).

S  We define a function so that is the set
of states NFA can be in after reading x starting in q. So, is
the set of states to each of which there is a path from q, labeled x.

S  The extended transition function is defined as follows:
S 

S 

S  Since (prove!), we will for convenience write instead of .

S  It is useful to extend to sets of states by

�̂

�̂(q, a) = �(q, a) � �̂

�̂ : Q⇥ ⌃⇤ ! 2Q �̂(q, x)
�̂(q, x)

�̂(q, ") = {q}
q pr

w

aw

w

a

a

a

� �(S, x) =
[

q2S

�(q, x).

�̂(q, wa) = {p 2 Q | 9r 2 �̂(q, w) : p 2 �(r, a)}

Borut Robič, Computability &
Computational Complexity

58

S  Definitions.
S  A string x is said to be accepted by a NFA

if contains some (i.e, .).

S  The language accepted by a NFA is the set

(Q,⌃, �, q0, F)M =
p 2 F�(q0, x)

(Q,⌃, �, q0, F)M =

L(M) = {x 2 ⌃⇤ | �(q0, x) contains a state in F}

�(q0, x) \ F 6= ;

Borut Robič, Computability &
Computational Complexity

59

S  Suppose x = 01001 is input to M. Is x in L(M) ?
S  We must compute the state

S 

Example (cont’d). q3q0 q4

q1

Start
0,11

00

q2

1
0,1

0,1

0 1
q0 | {q0, q3} {q0, q1}
q1 | ; {q2}
q2 | {q2} {q2}
q3 | {q4} ;
q4 | {q4} {q4}

�(q0, x) = �(q0, 01001).

�(q0, 01001) = �({q0, q3}, 1001)
= �({q0, q1} [;, 001) = �({q0, q1}, 001)
= �({q0, q3} [;, 01) = �({q0, q3}, 01)
= �({q0, q3} [{q4}, 1) = �({q0, q3, q4}, 1)
= �({q0, q1} [; [{q4}, ") = �({q0, q1, q4}, "), and q4 2 F

☟

 2.4 Equivalence of DFA’s and NFA’s

S  Every DFA is also NFA.
S  Why? A DFA can be viewed as a trivial NFA.

S  So the class of languages accepted by NFAs includes all the
languages accepted by DFAs (regular sets):

Borut Robič, Computability &
Computational Complexity

60

The class of languages accepted by NFAs

The class of languages accepted by DFAs
?

Question: Are there any languages in-between?

Borut Robič, Computability &
Computational Complexity

61

S  Answer: No, the two classes are equal !
S  How do we know that? For every NFA there is an equivalent DFA

(i.e., one that accepts the same language as the NFA)!

S  The next theorem shows how we construct the equivalent DFA.

S  Theorem. Let L be a set accepted by a NFA M.
 Then there exists a DFA M' that accepts L.

S  Proof idea.
S  The DFA M' will simulate the NFA M. To achieve this:

S  The states of M' will correspond to sets of states of M.

S  The control unit of M' will keep track of all states
in which M could have been had it read the same input as M'.

Borut Robič, Computability &
Computational Complexity

62

S  Proof.

S  Let be an NFA accepting L.

S  We define a DFA as follows:

S  . That is, the states of M' will represent sets of states of M. How?
A state of M' will represent the set of all states in which M could be at that moment.

S  Notation: We will denote a state of M’ by (where).
So will be a state of M’ representing the set of states of M.

S 

S 

S 

That is, applied to a state of M' is computed by (1) applying to
each state in and (2) taking the union of the obtained sets.
The union is a new set of states, , encoded in M’ by .
This is the value of .

S  F' is the set of all states in Q' containing at least one final state of M.

M = (Q,⌃, �, q0, F)

Q0 = 2Q

q00 = [q0]

��0

qi1 , . . . , qik 2 Q

�0([qi1 , . . . , qik], a) = [pj1 , . . . , pj`] i↵ �({qi1 , . . . , qik}, a) = {pj1 , . . . , pj`}

[qi1 , . . . , qik]
[qi1 , . . . , qik]

{qi1 , . . . , qik}

[qi1 , . . . , qik]

{pj1 , . . . , pj`} [pj1 , . . . , pj`]
�0([qi1 , . . . , qik], a)

{qi1 , . . . , qik}

M 0 = (Q0,⌃0, �0, q00, F
0)

⌃0 = ⌃

Borut Robič, Computability &
Computational Complexity

63

S  Proof (cont’d).

S  Next, we show that

S  We prove this by induction on the length of the input string x. (Exercise.)

S  Finally, we add that

S  Thus,

We have proved that DFA M' accepts the same language as NFA M.
In this respect, M' and M are equivalent (they are equally powerful).

|x|

L(M) = L(M 0). ⇤

�0(q00, x) = [qi1 , . . . , qik] i↵ �(q0, x) = {qi1 , . . . , qik}, for arbitrary x 2 ⌃⇤.

�0(q00, x) 2 F 0 i↵ �(q0, x) contains a state of Q that is in F

Borut Robič, Computability &
Computational Complexity

64

S  Let be an NFA where

S  The DFA accepting has:

S  , i.e. all subsets of

S 

S 

Example.

M = ({q0, q1}, {0, 1}, �, q0, {q1})
�(q0, 0) = {q0, q1}

�(q0, 1) = {q1}
�(q1, 0) = ;
�(q1, 1) = {q0, q1}

M 0 = (Q0, {0, 1}, �0, [q0], F 0) L(M)

Q0 = 2Q = {;, [q0], [q1], [q0, q1]} Q = {q0, q1}

q0 q1
0

1

0

1
1

�0(;, 0) = ;
�0(;, 1) = ;

�0([q0], 0) = [q0, q1]

�0([q0], 1) = [q1]

�0([q1], 0) = ;
�0([q1], 1) = [q0, q1]

�0([q0, q1], 0) = [q0, q1]

�0([q0, q1], 1) = [q0, q1]

�
0,1[q0,q1]

[q0] [q1]
0
1 0

1

0,1

F 0 = {[q1], [q0, q1]}

 2.5 NFA’s with ε-Moves

S  We may extend the model of the NFA to include spontaneous
transitions, that is, transitions on the empty input ε.

S  Example. The transition diagram of such an NFA is:

S  The NFA accepts words consisting of any number (including zero) of 0’s followed by

any number of 1’s followed by any number of 2’s. Why?

S  The answer is: The NFA accepts a string x if there is a path labeled x from q0 to q2.
But edges labeled εmay be included in the path, although ε does not appear explicitly in x.

S  For example, x = 002 is accepted because there is a path q0, q0, q0, q1, q2, q2 with arcs
labeled 0, 0, ε, ε, 2.

Borut Robič, Computability &
Computational Complexity

65

q0 q2

0 2

ε q1
ε

1

Start

Borut Robič, Computability &
Computational Complexity

66

S  Definition. A NFA with 𝜀-moves (NFA𝜀))
is a 5-tuple where:
S  is a finite set of states,

S  is a finite input alphabet,

S  is the initial state,

S  is the set of final states, and ☟

S  is the transition function, i.e.

 That is, is the set of all states p such that there is

 a transition labeled a from q to p, where a is either 𝜀 or a symbol in .

S  Note: can be viewed as a program of NFA𝜀. Every NFA𝜀 has its own specific . . Every NFA𝜀 has its own specific . has its own specific .

Q

⌃

�
�(q, a)

q0 2 Q

F ✓ Q

⌃

(Q,⌃, �, q0, F)

� : Q⇥ (⌃ [{"}) ! 2Q

� �

Borut Robič, Computability &
Computational Complexity

67

S  Example (cont’d). The NFA𝜀 corresponding to the diagram

 is , where:
S 

S 

S 

S 

q0 q2

0 2

ε q1
ε

1

Start

(Q,⌃, �, q0, F)

Q = {q0, q1, q2}
⌃ = {0, 1, 2}

� =

0 1 2 ✏
q0 | {q0} ; ; {q1}
q1 | ; {q1} ; {q2}
q2 | ; ; {q2} ;

F = {q2}

Borut Robič, Computability &
Computational Complexity

68

S  To describe the behavior of such an NFA𝜀 on a string, we must
extend 𝛿 so that it will be applicable to a state and a string.

S  We will define a function so that will
be the set of states p such that there is a path labeled x from q to p,
perhaps including edges labeled 𝜀.

S  In the definition of we’ll need to compute the set of all states
reachable from the state q with 𝜀-transitions only : 𝜀-Closure(q).

S  Example. 𝜀-Closure(q0) = {q0, q1, q2},
 𝜀-Closure(q1) = {q1, q2},

 𝜀-Closure(q2) = {q2}.

S  We extend the definition to sets: 𝜀-Closure(S)

�̂ : Q⇥ ⌃⇤ ! 2Q �̂(q, x)

�̂

=
[

q2S

"-Closure(q)

q0 q2

0 2

ε q1
ε

1

Start

Borut Robič, Computability &
Computational Complexity

69

S  The extended transition function is defined inductively:
S 

S  For

S  But now, in general, . (Why?)

S  We can also extend and to sets of states; if R is a set of states, then

�̂

�̂(q, ") = "-Closure(q)

w 2 ⌃⇤ and a 2 ⌃ we have

�̂(q, wa) = "-Closure(P)

�̂�

�̂(R, x) =
[

q2R

�̂(q, x)

�(R, a) =
[

q2R

�(q, a)

q pr
w

aw

w

a

a

a

P
ε-Closure(P)

�̂(q, a) 6= �(q, a)

where P = {p | 9r 2 �̂(q, w) : p 2 �(r, a)}

Borut Robič, Computability &
Computational Complexity

70

S  Example (cont’d). The NFA𝜀 with the transition diagram

 has

 Suppose x = 01 is the input. What is

S 

S 

S 

q0 q2

0 2

ε q1
ε

1

Start
Q = {q0, q1, q2} � =

0 1 2 ✏
q0 | {q0} ; ; {q1}
q1 | ; {q1} ; {q2}
q2 | ; ; {q2} ;

�̂(q0, ") = "-Closure(q0) = {q0, q1, q2}

�̂(q0, 0) = "-Closure(�(�̂(q0, "), 0)) = "-Closure(�({q0, q1, q2}, 0))

= "-Closure(�(q0, 0) [�(q1, 0) [�(q2, 0)) = "-Closure({q0} [; [;)
= "-Closure({q0}) = {q0, q1, q2}

�̂(q0, 01) = "-Closure(�(�̂(q0, 0), 1) = "-Closure(�({q0, q1, q2}, 1))

= "-Closure({q1}) = {q1, q2}

�̂(q0, 01)?

F = {q2}

Borut Robič, Computability &
Computational Complexity

71

S  Definitions.
S  A string x is said to be accepted by an NFA𝜀

 if contains some .

S  The language accepted by an NFA𝜀 is the set is the set

(Q,⌃, �, q0, F)M =

p 2 F

(Q,⌃, �, q0, F)M =

�̂(q0, x)

L(M) = {x 2 ⌃⇤ | �̂(q0, x) contains a state in F}

 2.6 Equivalence of NFAε’s and NFA’s

S  The ability to make transitions on 𝜀 does not allow NFA𝜀s to
accept non-regular sets.

S  Why? We’ll see that NFAs can simulate NFA𝜀s.
That is, for every NFA𝜀 there is an equivalent NFA
(accepting the same language as the NFA𝜀).

Borut Robič, Computability &
Computational Complexity

72

Borut Robič, Computability &
Computational Complexity

73

S  Theorem. Let L be a set accepted by an NFA𝜀 M.
 Then there exists an NFA M' that accepts L.

S  Proof idea.
S  We want M’ to simulate a move of M for each pair of state and

input, (q,a). Since M can make also 𝜀-transitions during a move,
M’ must be able to change to a state p if there is a path in the
diagram of M from q to p labeled a, possibly with 𝜀-transitions.
Hence, we want .

�0(q, a) = �̂(q, a)

Borut Robič, Computability &
Computational Complexity

74

S  Proof.

S  Let be an NFAε accepting L.

S  We define a NFA, as follows:

S  , that is, for every and .

S 
S  Note: M ' has no 𝜀-transitions (it is an NFA). So we can use instead of .

But and must still be distinguished (as they belong to an NFA𝜀).

S  Lemma. for .
 Proof: Induction on |x|. Exercise.

S  Finally, we prove: contains a state of F ' iff contains a state of F.
 Proof. Exercise.

M = (Q,⌃, �, q0, F)

M 0 = (Q,⌃, �0, q0, F
0)

�0 = �̂ �0(q, a) = �̂(q, a) a 2 ⌃q 2 Q

F 0 =

(
F [{q0} if "-Closure(q0) contains a state in F,

F otherwise.

�0 �̂0

�̂�

|x| > 1

�0(q0, x)
⇤

⇤

⇤
�0(q0, x) = �̂(q0, x)

�̂(q0, x)

Borut Robič, Computability &
Computational Complexity

75

S  Example (cont’d). The NFA𝜀 M with the transition diagram

 has:

 The equivalent NFA is , where:

S 

S  (because is reachable from any state of Q)

The diagram of the NFA M ’ is:

q0 q2

0 2

ε q1
ε

1

Start Q = {q0, q1, q2} � =

0 1 2 ✏
q0 | {q0} ; ; {q1}
q1 | ; {q1} ; {q2}
q2 | ; ; {q2} ;

M 0 = (Q,⌃, �0, q0, F
0)

�0(q, a) = �̂(q, a) =

0 1 2
q0 | {q0, q1, q2} {q1, q2} {q2}
q1 | ; {q1, q2} {q2}
q2 | ; ; {q2}

q2 2 F

q0 q2

0 2

q1

1

Start 0,1 1,2

0,1,2

F = {q2}

F 0 = {q0, q1, q2}

 2.7 Regular Expressions

S  The languages accepted by finite automata are easily described
by simple expressions called regular expressions.

S  In this section we
S  introduce operations of concatenation and closure on languages,

S  define regular expressions, and

S  prove that the class of languages accepted by finite automata is the
same as the class of languages describable by regular expressions.

Borut Robič, Computability &

Computational Complexity
76

Borut Robič, Computability &
Computational Complexity

77

S  Definition. Let 𝛴 be an alphabet. Let L1 and L2 be sets of words
from 𝛴*. The concatenation of L1 and L2, denoted L1L2 , is the set

Words in L1L2 are formed by taking an x in L1 and following it by a y in L2, for all possible x, y.

S  Definition. Let . Define L0 = and Li = LLi-1 for i ⩾1.
The Kleene closure (in short closure) of L, denoted L*, is the set

and the positive closure of L, denoted L+, is the set

L* is the set of words that are constructed by concatenating any number of words from L.
L+ is the same, but the case of zero words (whose concatenation is defined to be 𝜀), is excluded.
Note: L+ contains 𝜀 iff L contains 𝜀. (Why? Exercise.)

L⇤ =
1[

i=0

Li

L+ =
1[

i=1

Li

L1L2 = {xy |x 2 L1 and y 2 L2}

{"}L ✓ ⌃⇤

Borut Robič, Computability &
Computational Complexity

78

S  Example.

 Let L1 = {10, 1} and L2 = {011, 11}.
S  Then: L1L2 = {10, 1}{011, 11} = {10011, 1011, 111}. (Note: 1011 = 1011.)
S  Also: L1* = {10, 1}*

 = L1
0 U L1

1 U L1
2 U …

 = {10, 1}0 U {10, 1}1 U {10, 1}2 U …

 = {𝜀} U {10,1} U {1010, 101, 110, 11} U …
 = {𝜀, 10,1, 1010, 101, 110, 11, …}

S  And: L1
+ = {10, 1}+ = {10,1, 1010, 101, 110, 11, …}

S  Example.

 Let 𝛴 be an alphabet. 𝛴* is the set of all strings of symbols in 𝛴.
S  Let 𝛴 = {1}. Then 𝛴* = {𝜀, 1, 11, 111, 1111, …}

S  Let 𝛴 = {0,1}. Then 𝛴* = {𝜀,0,1,00,01,10,11,000,001,010,011,100,101,110,111,…}

Borut Robič, Computability &
Computational Complexity

79

S  Definition. Let 𝛴 be alphabet. The regular expressions (r.e.) over 𝛴
(and the sets that they denote) are defined inductively as follows:
1)  is a r.e.; it denotes the empty set, ;

2)  𝜀 is a r.e.; it denotes the set {𝜀};

3)  For each a ∊ 𝛴, a is a r.e.; it denotes the set {a};

4)  If r and s are r.e.s denoting languages R and S, respectively, then
a)  (r + s) is a r.e.; it denotes the set R U S ; (union of R and S)

b)  (rs) is a r.e.; it denotes the set RS ; (concatenation of R and S)

c)  (r*) is a r.e.; it denotes the set R*. (Kleene closure of R)

Note. The basic r.e.s are defined explicitly (1,2,3). All the other r.e.s are defined
inductively (4a,b,c). Definitions of this kind are called inductive. Properties of
the defined objects are often proved by induction.

; ;

Borut Robič, Computability &
Computational Complexity

80

S  Conventions.

S  We can omit many parentheses
S  if we assume that * has higher precedence than concatenation

and concatenation has higher higher precedence than +.

 Example. ((0(1*)) + 0) may be written 01* + 0.

S  if we abbreviate the expression rr* by r+.

S  When
S  necessary to distinguish between a regular expression r and the

language denoted by r, we use L(r) for the latter;

S  no confusion is possible we use r for both the regular expression
and the language denoted by the regular expression.

Borut Robič, Computability &
Computational Complexity

81

S  Examples.
S  00 is a regular expression that denotes the set {00}.

S  0* denotes the set of strings of any number of 0s

S  0+ denotes the set of strings of at least one 0

S  0*1* denotes the set of strings of any number of 0s followed by any number of 1s.

S  0+1+ denotes the set of strings with at least one 0 followed by at least one 1.

S  (0+1)* denotes the set of all strings of 0s and 1s.

S  (0+1)*11 denotes the set of strings of 0’s and 1’s ending in 11.

S  (0+1)*00(0+1)* denotes the set of strings of 0s and 1s with at least two consecutive 0s.

S  (1+10)* denotes the set of strings of 0s and 1s beginning with 1 and not containing 00.
(Proof: Induction on i that strings denoted by (1+10)i begin with 1 and have no 00.)

S  (0 + 𝜀)(1+10)* denotes the set of all strings of 0s and 1s whatsoever containing no 00

S  0*1*2* strings of any num. of 0’s followed by any num. of 1s followed by any num. of 2s.

S  00*11*22* strings of at least one 0 followed by at least one 1 followed by at least one 2.
(We may use the shorthand 0+1+2+ for 00*11*22*)

 2.8 Equivalence of
Finite Automata and Regular Expressions

S  We will show that the languages accepted by finite automata are
precisely the languages denoted by regular expressions.
(This is why finite automaton languages are called regular sets.)

S  How? In two steps, by showing that

S  For every regular expression r there is a NFAℇ accepting the language L(r).
(But NFAℇs are equivalent to NFAs and to DFAs, so they all accept the same class of languages.)

S  For every DFA M there is a regular expression denoting the language L(M).

S  So, the four language-defining ways (DFA, NFA, NFAℇ, regular
expression) define the same class of languages, the regular sets.

Borut Robič, Computability &
Computational Complexity

82

Borut Robič, Computability &
Computational Complexity

83

S  Theorem. Let r be an arbitrary regular expression.
 Then there exists an NFA𝜀 that accepts L(r).

S  Proof idea. We use induction on the number of operators in r
to show that, for any r.e. r, there exists an NFA𝜀 M = (Q, 𝛴, 𝛿, q0, { f0 }) M = (Q, 𝛴, 𝛿, q0, { f0 })
with one final state and no transitions out of it, such that L(M) = L(r).

Note. NFA𝜀s with just one final state will enable us to easily combine them s with just one final state will enable us to easily combine them
into larger NFA𝜀s. No generality will be lost in this way. (Why? Show how s. No generality will be lost in this way. (Why? Show how
an arbitrary general NFA can be transformed into such equivalent NFA𝜀.) .)

Borut Robič, Computability &
Computational Complexity

84

S  Proof.
S  Let P(n) ≣ ‘If r is a r.e. with n operators, then there is a NFA𝜀 M such that L(M) = L(r).’ M such that L(M) = L(r).’
S  We prove P(n) by induction on n.
S  Basis [check P(0)]. If n=0, then r is either , 𝜀, or a (a ∊ 𝛴). The associated NFA𝜀s are:

S  Inductive hypothesis [suppose P(n) holds for all n ⩽ k -1 (so k ⩾1)]
S  Inductive step [show that then P(n) holds for all n ⩽ k]

 Let r have k operators. There are three cases depending on the form of r :
S  r = r1+r2 . Each of r1 ,r2 has ⩽ k -1 operators. By ind.hyp. there are NFA𝜀s M1, M2 such s M1, M2 such

that L(M1) = L(r1) and L(M2) = L(r2). The NFA𝜀 M corresponding to r is in Fig. (a). M corresponding to r is in Fig. (a).

S  r = r1r2 . Each of r1, r2 has ⩽ k -1 operators. By ind.hyp. there are NFA𝜀s M1, M2 such s M1, M2 such
that L(M1) = L(r1) and L(M2) = L(r2). The NFA𝜀 M corresponding to r is in Fig. (b). M corresponding to r is in Fig. (b).

S  r = r1*. Here, r1 has ⩽ k -1 operators. By ind.hyp there is an NFA𝜀 M1 such M1 such
that L(M1) = L(r1). The NFA𝜀 M corresponding to r is in Fig. (c). M corresponding to r is in Fig. (c).

 ☐

;

q2 f2
ε εM2

q1 f1ε εM1
f0q0

Start
q2 f2M2

q1 f1M1
Start ε

ε

q1 f1
ε ε

M1
f0q0

Start
ε

(a) (b) (c)

q0 f0
Start q0

aStart f0q0
εStart f0

Borut Robič, Computability &
Computational Complexity

85

S  Example.
S  Vaje.

Borut Robič, Computability &
Computational Complexity

86

S  Theorem. Let M be an arbitrary DFA.
 There exists a regular expression that denotes L(M).

S  Proof idea.
S  We view L(M) as a union of sets (finitely many) .

S  Each of the sets corresponds to a final state of M and contains all
the words that take M from the initial state to this final state.

S  We then define these sets inductively (bottom up, by simpler sets).
In parallel we construct to each such set the corresponding
regular expression.

Borut Robič, Computability &
Computational Complexity

87

S  Proof.
S  Let be given a DFA M = ({q1, …, qn}, 𝛴, 𝛿, q1, F).
S  By definition: L(M) = ‘set of all words that take M from initial q1 to any final qj’
S  Let Rn

1j ≣ ‘set of all words that take M from q1 to qj’. Then L(M) = .
S  Note: if we knew how to construct a r.e. for Rn

1j , then r.e. would denote L(M).
S  Let Rk

ij ≣ ‘set of all words taking M from qi to qj and crossing no state indexed >k.’
S  Note: Rk

ij can be constructed inductively: (*)

 (**)

S  Question. Can we construct r.e. (for) when we construct ?
S  Answer. Yes; the constructive proof of the next proposition shows how we do this.

S  Proposition: P(k) ≣ ‘For each i,j,k there is a r.e. denoting .’
 Proof (induction on k).

 Basis [check P(0)]. (**) suggests that is denoted by = a1+…+ap or = a1+…+ap + 𝜀.
 Ind.hyp.[assume P(k-1) holds]. So, for each i,j,k there is a r.e. denoting .

 Ind.step [does P(k-1) ⇒P(k) hold?]
 (*) and ind.hyp. tell us that is denoted by the r.e. .
 ☐

☐

Rk
ij = Rk�1

ik (Rk�1
kk)⇤Rk�1

kj [Rk�1
ij

R0
i,j =

(
{a | �(qi, a) = qj} if i 6= j

{a | �(qi, a) = qj} [{"} if i = j

rkij Rk
ij

[

qj2F

Rn
1j

R0
ij r0ij r0ij

rk�1
ij Rk�1

ij

Rk
ij rkij = rk�1

ik (rk�1
kk)⇤rk�1

kj + rk�1
ij

Rk
ij

Rk
ij

rkij

rn1j

nX

j=1

rn1j

Borut Robič, Computability &
Computational Complexity

88

S  Example.
S  Vaje.

 2.9 Applications of Finite Automata

S  There are a many software design problems that are simplified by
automatic conversion of regular expressions to efficient
simulators of the corresponding DFAs.

S  Such software design problems include the design of:
S  Lexical analyzers

S  Text editors

S  Data compressors

S  See also Google: Application of Finite Automata

Borut Robič, Computability &
Computational Complexity

89

Borut Robič, Computability &
Computational Complexity

90

S  Lexical analyzers.

S  Lexical analyzer is a program that performs lexical analysis. Lexical
analysis is the process of converting a sequence of characters (e.g.
program, web page, …) into a sequence of language tokens.
A language token is a string with an identified meaning (e.g. keyword,
identifier, literal, numeric constant, …).

S  Language tokens are usually expressible as regular expressions.

S  Examples.
S  An ALGOL identifier is an upper- or lower-case letter followed by any sequence of letters

and digits, with no limit on length. Such identifiers are expressed as (letter)(letter+digit)*,
where letter = (A+B+…+Z+a+b+…+z) and digit = (0+1+…+9).

S  A FORTRAN indentifier has length limit 6 and letters restricted to upper-case and $.
These identifiers are expressed as (letter)(𝜀+letter+digit)5 where letter = ($+A+B+…+Z).

S  A SNOBOL arithmetic constant is expressed as (𝜀 + -)(digit + (. digit* + 𝜀) + . digit+).

Borut Robič, Computability &
Computational Complexity

91

S  A lexical-analyzer generator takes as input a sequence of r.e.s (describing
various tokens) and produces a single DFA recognizing any token.

S  How?
S  It performs conversions {given r.e.s} → NFA𝜀 → DFA (rather then via NFA). → DFA (rather then via NFA).

S  Each final state of the DFA indicates the particular token found during lexical analysis.

S  The 𝛿 of the DFA is encoded (to take less space than a 2D-array).

S  The resulting lexical analyzer is a fixed program that interprets (simulates) the DFA.

S  This lexical analyzer may then be used as a module in a compiler.

Borut Robič, Computability &
Computational Complexity

92

S  Text editors.

S  Certain text editors and similar programs offer commands that may
accept r.e.s as parameters.

S  Examples.
S  In UNIX text editor, the command s/bbb*/b substitutes a single blank b for the first

string of two or more blanks found in the current line of text.

S  Generally, given a word w and a r.e. r, the command s/r/w substitutes w for the first
string that matches r in the current line of text. (More precisely, the command
substitutes w for the first occurrence of any word from L(r) in the current text line.)

Borut Robič, Computability &
Computational Complexity

93

S  Data compressors.

S  ….

S  Examples.
S  …

2.10 Dictionary

token jezikovni simbol finite automaton končni avtomat regular expression regularni izraz finite
state system končni sistem state stanje switching circuit preklopno vezje Turing machine Turingov
stroj deterministic finite automaton deterministnični končni avtomat state transition prehod stanja
input symbol vhodni simbol input alphabet vhodna abeceda initial state začetno stanje final state
končno stanje accepting state sprejemajoče stanje to accept sprejeti transition diagram diagram
prehodov transition function funkcija prehodov control unit nadzorna enota tape trak move poteza
window okno extended transition function razširjena funkcija prehodov regular set regularna
množica nondeterministic finite automaton nedeterministični končni avtomat execution tree drevo
izvajanja ℇ-move tihi prehod concatenation stik closure zaprtje Kleene closure Kleenovo zaprtje
positive closure pozitivno zaprtje lexical analysis leksikalna analiza lexical analyzer leksikalni
analizator language token jezikovni simbol lexical-analyzer generator generator leksikalnih
analizatorjev text editor urejevalnik data compressor

Borut Robič, Computability &
Computational Complexity

94

S

3
Properties of Regular Sets

Borut Robič, Computability &
Computational Complexity

95

Contents

S  The pumping lemma for regular sets

S  Closure properties of regular sets

S  Decision algorithms for regular sets

S  The Myhill-Nerode theorem and minimization of FA

Borut Robič, Computability &
Computational Complexity

96

Borut Robič, Computability &
Computational Complexity

97

S  Questions about regular sets.

S  There are many questions we can ask about regular sets; for example:
S  Given a language L specified in some way, is L a regular set?
S  Given regular expressions r1, r2, are the regular sets L(r1), L(r2) equal?
S  Given a FA M, find the minimal equivalent FA (with fewest states).
S  ...

S  We will provide tools for answering such questions about regular sets.
In particular, we will provide:
S  Pumping lemma (for proving that certain languages are not regular)

S  Closure properties (for proving that certain languages are regular)

S  Decision algorithms (for answering certain questions about r.e.s and FAs)

S  Myhill-Nerode theorem (for proving that certain languages are not regular)

3.1 The Pumping Lemma for Regular Sets

S  The pumping lemma for regular sets is a powerful tool
S  for proving that certain languages are not regular

S  for proving that languages of particular FAs are (in)finite

Borut Robič, Computability &
Computational Complexity

98

Borut Robič, Computability &
Computational Complexity

99

S  Pumping Lemma (for regular sets). Let L be a regular set. Then there
is a constant n (depending only on L) such that the following holds:
if z is any word such that

 z ∊ L and |z|⩾ n,
then there exist words u, v, w such that

 z = uvw,
 |uv|⩽ n,
 |v|⩾ 1, and
 ∀i ⩾ 0: uv

iw ∊ L.
 In addition, n is at most the number of states of the smallest FA accepting L.

S  Informally. Given any sufficiently long word z accepted by an FA, we can find a subword v near the beginning of z
that may be repeated ("pumped”) as many times as we like but the resulting word will still be accepted by the FA.

S  Formally. The Pumping Lemma is succinctly stated as follows: (we will need this!)

L regular =) (9n)(8z)
h
z2L ^ |z|�n) (9u, v, w)[z=uvw ^ |uv|n ^ |v|�1 ^ (8i � 0)uviw2L]

i

vu w

vu wv v

z

uv

i
 w

Borut Robič, Computability &
Computational Complexity

100

S  Proof.
S  Let L be a regular set.

 So there is a DFA M = (Q,𝛴,𝛿,q0,F) accepting L.
 Let n :=|Q|.

S  Let z = a1…am (m ⩾ n) be a word in L.
S  Start M on input z. While reading z, M enters various states.
 Denote by the state of M after reading a1…ai .
 When entire z = a1…am is read, M has entered m+1 states .
S  Note: at least two of these states, say , (0⩽j<k⩽n), must be equal (as|Q|<m+1).

 So the path has a loop labeled aj+1…ak .

S  If we take u := a1…aj , v := aj+1…ak and w := ak+1…am , we can prove that

S  z = uvw ;

S  |uv|⩽ n ;
S  1 ⩽|v|, and
S  for all i ⩾ 0, uviw ∊ L.

☐

q`i
q0, q`1 , . . . , q`m

q`j q`k
q0!q`1 ! . . .!q`m q`j ! . . .!q`k

Borut Robič, Computability &
Computational Complexity

101

S  Applications of the pumping lemma.

S  The lemma is useful in proving that certain languages are not regular.
The method of proving this is derived from the formally written lemma.
How?
S  Formally, the pumping lemma is written as

S  Let us focus on those z,u,v,w’s for which P and Q are true; let us fix n to the constant whose

existence is assured by the lemma. For such ‘good’ n,z,u,v,w’s we can reduce the formula to

S  Recall from logic: A ⇒ B ≣ ¬B ⇒ ¬A; and ¬(∀x)F(x) ≣ (∃x)¬F(x); and ¬(∃x)F(x) ≣ (∀x)¬F(x).
If we apply these equivalences to the above formula we obtain

S  Notice: If we prove, for a given L, that the left-hand side of ‘⟹’ holds, then L is not regular.
This is the basis of the following method of proving that a language L is not regular.

L regular =) (9n)(8z)
h
z2L ^ |z|�n| {z }

P

) (9u, v, w)[z=uvw ^ |uv|n ^ |v|�1| {z }
Q

^(8i � 0)uviw2L]
i

L regular =) (8z)(9u, v, w)(8i � 0)uviw2L (where n, z, u, v, w are ’good’)

(9z)(8u, v, w)(9i � 0)uviw 62L =) L not regular (where n, z, u, v, w are ’good’)

Borut Robič, Computability &
Computational Complexity

102

S  The method.

S  Suppose that we want to prove that a given language L is not regular.
To do this, we try to prove that the following holds for L:

To prove this we:
a)  Pick an n and declare it to be the constant mentioned in the lemma.

b)  Select a ‘good’ word z (i.e. such that z ∊ L, |z|⩾ n)

c)  Find all possible partitions of z into ‘good’ u,v,w (i.e. such that z = uvw ,|uv|⩽ n,|v|⩾1)

d)  Try to prove:
 for every ‘good’ partition u,v,w
 there exists an i ⩾ 0
 for which uviw ∉ L.

If d) succeeds, then L is not regular.

(9z)(8u, v, w)(9i � 0)uviw 62L (where n, z, u, v, w are ’good’)

Borut Robič, Computability &
Computational Complexity

103

S  Example.
S  Let L = . We want to prove that L is not regular.
S  We use the described method.

S  Let n be the constant from the lemma.
S  Select z = . (z is ‘good’ because z ∊ L and|z|= n2 ⩾ n.)
S  There are many possible partitions of z into ‘good’ u,v,w (i.e. z = uvw,|uv|⩽ n,|v|⩾1).
 Note: for every ‘good’ partition u,v,w we have 1⩽|v|⩽ n. (Why?)
S  Let u,v,w be an arbitrary ‘good’ partition of z. We’ll show that uv2w ∉ L.

S  Compute: |uv2w| = |u|+ 2|v|+|w| = |z|+|v| = n2 +|v|.
S  But 1 ⩽ |v| ⩽ n.
S  So n2 +1 ⩽|uv2w| ⩽ n2 +n, which is < (n+1)2.
S  Hence n2 <|uv2w| < (n+1)2.
 This means that|uv2w| is not a perfect square; consequently uv2w ∉ L.
S  We proved that, for any ‘good’ u,v,w, there exists an i (=2) such that uviw ∉ L.

S  According to our method, this implies that L is not regular.

S  There exist non-regular languages! For these we will need a model of
computation that will be more powerful than FA.

{0i
2

| i 2 N}

0n
2

Borut Robič, Computability &
Computational Complexity

104

S  Example.
S  Let L = . . We want to prove that L is not regular.
S  We use the described method.

S  Let n be the constant from the lemma.
S  Select z = , where p is a prime. (Obviously z is ‘good’.)
S  There are many possible partitions of z into ‘good’ u,v,w (i.e. z = uvw,|uv|⩽ n,|v|⩾1).

 For every ‘good’ partition u,v,w we have 1⩽|v|⩽ n.
S  Let u,v,w be an arbitrary ‘good’ partition of z. We’ll show that uv

p+1w ∉ L.
S  Compute|uv

p+1w| = |u|+ (p+1)|v|+|w|=|z|+ p|v|= p + p|v| = p(1+|v|).
S  This is not a prime (because 1+|v| ⩾ 2).
S  Since|uv p+1w| is not a prime, we have uv

p+1w ∉ L !
S  We proved: for every ‘good’ u,v,w, there exists an i (=p+1) such that uv

iw ∉ L.

S  According to our method, this implies that L is not regular.

S  There is no FA accepting this L; and L cannot be denoted by a regular expression.

{0p | p is a prime}

0p

3.2 Closure Properties of Regular Sets

S  Some operations on languages preserve regular sets (in the sense that the
operations applied to regular sets result in regular sets).

S  We say that the class of regular sets is closed under an operation if the
operation applied to regular sets results in a regular set.

S  If the class of regular sets is closed under a particular operation, we call that
fact closure property of the class of regular sets.

S  We are particularly interested in effective closure properties of the class of
regular sets. For such properties, given descriptors for regular sets, there is an
algorithm to construct a descriptor for the regular set that results by applying
the operation to these regular sets.

Borut Robič, Computability &
Computational Complexity

105

Borut Robič, Computability &
Computational Complexity

106

S  Closure under union, concatenation, and Kleene closure.

S  Theorem. The class of regular sets is closed under union,
 concatenation and Kleene closure.

Remark. The theorem states that the union L1 U L2 and concatenation L1L2 of regular sets L1, L2 is a regular set,

and the Kleene closure L* of a regular set L is a regular set.

S  Proof. The theorem follows directly from the definiton of regular sets.

S  Let L1 and L2 be regular sets. Is L1 U L2 a regular set?
Since L1,L2 are regular, there are r.e.’s r1,r2 such that L1 = L(r1) and L2 = L(r2).
(Recall: r1,r2 can be effectively constructed from the corresponding FA’s M1,M2.)
Now construct r.e. r1+r2. But this r.e. denotes L1 U L2. So L1 U L2 is regular.

S  Similarly we prove effective closure for concatenation and Kleene closure (exercise).

⧠

Borut Robič, Computability &
Computational Complexity

107

S  Closure under complementation and intersection.

S  Theorem. The class of regular sets is closed under
 complementation and intersection.

Remark. The theorem states that the complement 𝛴* – L of a regular set L is a regular set,

and the intersection L1 ⋂ L2 of regular sets L1, L2 is a regular set.

S  Proof.
S  (complementation) Let L be a regular set. Is 𝛴* – L also a regular set?

Since L is regular, there is a DFA M = (Q,𝛴,𝛿,q0,F) such that L = L(M). We will construct a
new DFA M’ for 𝛴* – L. Idea: M’ should have complemented final states. So, M’ = (Q’,𝛴,𝛿’,q0’,F’)
where Q’ := Q, 𝛴’ := 𝛴, 𝛿’ := 𝛿, q0’ := q0, and F’ := Q – F. So M’ accepts x iff M doesn’t accept x.
This means that M’ accepts 𝛴*– L(M) = 𝛴*– L. Consequently, 𝛴* – L is a regular set.

S  (intersection) Let L1,L2 be regular sets. Is L1 ⋂ L2 a regular set too?
We know that , where line denotes complementation (with respect to an
alphabet that includes the alphabets of L1, L2). Now, since the class of r.e. sets is closed under
complementation and union, it is also closed under intersection.

⧠

L1 \ L2 = L1 [L2

Borut Robič, Computability &
Computational Complexity

108

S  Closure under substitution and homomorphism.

S  Definition. Let 𝛴, 𝛥 be alphabets. A substitution is a function f that maps each symbol
of 𝛴 to a language overΔ; i.e. f (a) ⊆ 𝛥* for each a ∊𝛴. We extend f to words in 𝛴* by
defining f (𝜀) = 𝜀 and f (wa) = f (w) f (a); and then to languages by defining f (L) = .

S  Question. The definition of substitution says nothing about the kind of the set L and the sets f (a), a ∊𝛴.

What if we additionally require that L and all f (a), a ∊𝛴 are regular? Is then f (L) regular too?

S  Example. Let 𝛴={0,1}, 𝛥={a,b} and f a substitution defined by f (0)=a, f (1)=b*. Both f (a), f (b) are regular.
Let x = 010. Then f (x) = f (010) = … = f (0) f (1) f (0) = ab*a.

Let L be regular set denoted by 0*(0+1)1*; then f (L) = a*(a+b*)(b*)*. This is a regular set. (Prove.)

S  Definition. A homomorphism is a substitution h such that h(a) contains a single word
for each a ∊ 𝛴. We extend h to words and languages as in the case of the substitution.
The inverse homomorphic image of a word w is the set h

-1(w) = {x|h(x) = w} and of a
language L is the set h -1(L) = {x|h(x) ∊ L}.

S  Example. Let h be a homomorphism defined by h(0) = aa and h(1) = aba.
Let x = 010. Then h(x) = h(010) = aaabaaa; and h -1(aaabaaa) = {010}. (Why? Only 010 maps to aaabaaa.)
Let L1 = (01)*. Then h(L1) = (aaaba)*. Let L2= (ab+ba)*a. Then h -1(L2) = {x|h(x) ∊(ab+ba)*a} ={1}. (Why?)

[

x2L

f(x)

Borut Robič, Computability &
Computational Complexity

109

S  Theorem. The class of regular sets is closed under substitution,
 homomorphism and inverse homomorphism.

Remark. Let f be a substitution and h a homomorphism.
If L and all f (a) are regular, then also f (L) is regular; and if L is regular, h (L) and h-1(L) are regular too.

S  Proof idea.
S  (substitution) Let L and all f (a), a ∊ 𝛴 be regular sets. Let L be denoted by r.e. r and f (a) by ra.

Idea: replace each occurrence of a in r by ra . Then prove that the resulting r.e. r ’ denotes f (L).
(Use induction on the number of operators in r ’.)

S  (homomorphism) Closure under homomorphism follows directly from closure under substitution
(because every homomorphism is by definition a (special) substitution).

S  (inverse homomorphism) Let L be regular and h a homomorphism. We want to prove that h -1(L) is
regular. Let M be DFA accepting L. We want to construct a DFA M’ such that M’ accepts h

-1(L)
iff M accepts L. Idea: construct M’ so that when M’ reads a ∊ 𝛥, it simulates M on h

-1(L).

⧠

S  Homomorphisms and inverse homomorphisms often simplify proofs.

Borut Robič, Computability &
Computational Complexity

110

S  Closure under quotient.

S  Definition. The quotient of languages L1 and L2 is the set L1/L2
defined by
Informally, L1/L2 contains prefixes of words in L1 whose corresponding suffixes are words in L2.

S  Exercise. Prove or disprove: (L1/L2)L2 = L1 .

S  Example. To do.

S  Question. The definition of L1/L2 tells nothing about the kind of the sets L1, L2.
What if L1, L2 are regular? Is then L1/L2 regular too?
What if L1 is regular and L2 arbitrary? Is then L1/L2 still regular?
Here is the answer to both questions.

S  Theorem. The class of regular sets is closed under quotient
 with arbitrary sets.

S  Proof idea. To do, or not to do, that is the question. ⧠

L1/L2 = {x | 9y 2 L2 : xy 2 L1}.

3.3 Decision Algorithms for Regular Sets

S  We need algorithms to answer various questions about regular sets. These
questions include:
S  Is a given regular language L empty?
S  Is it finite?
S  Are two given FAs equivalent ?

S  These questions ask for the answer that is either YES or NO. Problems that
ask for YES/NO answers are called decision problems, and algorithms that
solve decision problems are called decision algorithms.

S  The inputs to decision algorithms will be representations of regular sets.
We will assume that regular sets are represented by FAs.
(We could also represent regular sets by r.e.’s, as there are algorithmic translations between r.e.’s and FAs.)

Borut Robič, Computability &
Computational Complexity

111

Borut Robič, Computability &
Computational Complexity

112

S  Emptiness and finiteness of regular sets.

Decision algorithms for the questions “Is a regular language L empty?’’ and
“Is a regular language L finite?’’ can be founded on the following theorem.

S  Theorem. The set L(M) accepted by a FA M with n states is:

1)  nonempty iff M accepts a word of length ℓ, where ℓ < n.

2)  infinite iff M accepts a word of length ℓ, where n ⩽ ℓ < 2n.

S  Algorithms (naïve). The obvious procedure to decide the problem

S  ‘’Is L(M) nonempty?’’ is: ”Check if any word of length ℓ < n is in L(M).”

S  “Is L(M) infinite?” is: ”Check if any word of length n ⩽ ℓ < 2n is in L(M).”

Both algorithms systematically generate all words of appropriate lengths ℓ and, for
each generated word, check whether M accepts that word. Both procedures eventually
halt (prove) and return a YES or NO.

Exercise. How many words must be generated and checked in the worst case?

Borut Robič, Computability &
Computational Complexity

113

S  Equivalence of finite automata.

S  Definition. Two finite automata M1 and M2 are said to be equivalent
if they accept the same language, i.e. if L(M1) = L(M2).

S  Theorem. There exists an algorithm to decide whether two FAs are equivalent.
S  Proof. Let M1 and M2 be FAs and L1 = L(M1) and L2 = L(M2).

Now define a language L3 as follows:

 L3 = .

L3 is regular (due to closure properties) and therefore accepted by some FA M3.
This M3 is important because we can show (Exercise) that

 M3 accepts a word iff L1 ⧧ L2.
So we must check whether M3 accepts any word, i.e. whether L3 is non-empty (see previous slide).

⧠

(L1 \ L2) [(L1 \ L2)

3.4 The Myhill-Nerode Theorem
and Minimization of FA

S  Let L be a regular set accepted by a DFA M. There are infinitely
many FAs equivalent to M. But they may greatly differ in their
components Q, 𝛿, F.

S  Questions:
S  Is there a minimum state DFA, i.e. one that has, among all DFAs

equivalent to M, the smallest number of states ?
S  If there is, can we algorithmically construct it?

S  The answer is YES. To see this we need the Myhill-Nerode Theorem.

Borut Robič, Computability &
Computational Complexity

114

Borut Robič, Computability &
Computational Complexity

115

S  Before we state the Myhill-Nerode Theorem we need some definitions.

S  Definition. Let L⊆𝛴* be an arbitrary language. Define a relation RL on 𝛴* by

S  Remarks. Two words x,y ∊ 𝛴* are in relation RL iff their arbitrary extensions xz,yz are either both

in L or both outside L. Now, RL is an equivalence relation (Exercise). So, RL partitions L into
equivalence classes. The number of these is called the index of RL and it can be finite or infinite.
(Example. If each x ∊ 𝛴* is in relation RL with no other y, then the index of RL is infinite.)

S  Definition. Let M = (Q,𝛴,𝛿,q0,F) be a DFA. Define a relation RM on 𝛴* by

S  Remarks. Two words x,y∊𝛴* are in relation RM iff they take M from q0 to the same state q.

RM is equivalence relation (Exercise). It partitions 𝛴* into equivalence classes, one for each state q
reachable from q0. The number of the classes is the index of RM . The index of RM is finite (since Q
is finite). Note that L(M) is the union of those equivalence classes (since each class corresponds
to a final state q ∊ F. We can prove (Exercise) that RM is right invariant, i.e. that

xRMy i↵ �(q0, x) = �(q0, y).

xRMy) 8z2⌃⇤ :xzRMyz

xRLy i↵ 8z2⌃⇤ : xz 2 L , yz 2 L.

Borut Robič, Computability &
Computational Complexity

116

S  The next theorem tells us that the defined notions are tightly
connected if L is a regular set.

S  Theorem. (Myhill-Nerode) The following statements are equivalent:
1)  L ⊆ 𝛴* is a regular set;

2)  RL is of finite index;

3)  L is the union of some of the equivalence classes of a right invariant equivalence
relation of finite index.

S  Remarks. The theorem is useful when, for a given L, we have proved one of the items 1,2,3.
Then, by Myhill-Nerode Theorem, the other two items hold too, and so reveal additional
information about L.

S  Example. If we have proved (3) for some ‘right invariant equivalence relation of finite
index’, then (1) tells us that L is regular.

S  Example. If have proved (1) that some DFA M accepts L, then (3) tells us that there is a
‘right invariant equivalence relation of finite index’ such that L is the union of some of
its equivalence classes. (Moreover, we know that this relation is RM).

Borut Robič, Computability &
Computational Complexity

117

S  A consequence of the Myhill-Nerode Theorem is that for every
regular set there is an essentially unique minimum state DFA.

S  Theorem. (minimum state DFA) The minimum state DFA accepting
a regular set L is unique up to an isomorphism (renaming of the states).

S  Proof idea.
S  Let L be regular. By Myhill-Nerode Theorem there are finite number of equivalence classes of RL.

Denote by [x] the eq. class containing x ∊ 𝛴*. So {[x]|x ∊ 𝛴*} is the set of all eq. classes of RL.
S  Construct a DFA M = (Q, 𝛴, 𝛿, q0, F) as follows:

S  Q := {[x]|x ∊ 𝛴*}; (that is, each state will correspond to an eq. class of RL)
S  𝛿 ([x],a) := [xa], for a ∊ 𝛴;
S  q0 := [𝜀];
S  F := {[x]|x ∊ L}.

S  Note: 𝛿(q0 ,w) = 𝛿(q0 , a1a2…an) = [a1a2…an] = [w]. Thus, M accepts w iff [w] ∊ F.
This means that M accepts L.

S  It follows from the proof of Myhill-Nerode Theorem that this M is the minimum state DFA for L.
⧠

3.5 Dictionary

regular set regularna množica pumping lemma lema o napihovanju closure property zaprtost closed under an
operation zaprt za operacijo effective efektiven substitution substitucija homomorphism homomorfizem inverse
homomorphic image inverzna homomorfna slika quotient kvocient decision problem odločitveni problem decision
algorithm odločitveni algoritem, odločevalnik representation predstavitev minimum state FA najmanjši končni
avtomat right invariant relation desno invariantna relacija

Borut Robič, Computability &
Computational Complexity

118

S

4
Context-Free

Grammars and Languages

Borut Robič, Computability &
Computational Complexity

119

Contents

S  Introduction

S  Context-free grammars and languages
S  Derivation trees
S  Simplification of context-free grammars
S  Chomsky normal form
S  Greibach normal form

S  Inherently ambiguous context-free languages

Borut Robič, Computability &
Computational Complexity

120

4.1 Introduction

S  We will introduce context-free grammars (CFG) and the
languages they describe—the context-free languages (CFL).

S  The CFLs are of great practical importance, for example in
S  defining programming languages,
S  formalizing the notion of parsing,
S  simplifying translation of programming languages, and in

S  other string-processing applications.

S  Example. CFGs are useful for describing
S  arithmetic expressions (with arbitrary nesting of balanced parentheses),
S  block structure of programs in programming languages (e.g. matching of {'s and }'s in Java).

These aspects of programming languages cannot be represented by regular expressions.

Borut Robič, Computability &
Computational Complexity

121

Borut Robič, Computability &
Computational Complexity

122

S  Informally, a CFG is a finite set variables (each of which implicitly represents a language

that can be generated from the variable by the CFG). Variables are defined recursively in
terms of variables and terminals (primitive symbols, which are not variables). The rules
that are used to define variables are called productions.

S  Example. A CFG that defines (the structure of) arithmetic expressions consisting of operators +, ∗,
parentheses (,) , and numeric operands (all represented by terminal id) has four productions:

S  (1) 〈expression〉 → 〈expression〉 + 〈expression〉

S  (2) 〈expression〉 → 〈expression〉 ∗ 〈expression〉

S  (3) 〈expression〉 → (〈expression〉)

S  (4) 〈expression〉 → id

S  There is just one variable, 〈expression〉;
S  The terminals are + , ∗ , (,) , id;
S  The productions are to be understood as follows:

S  (1) and (2) tell that an expression can be composed of two expressions connected by + or ∗;

S  (3) tells that an expression can be another expression surrounded by parentheses;
S  (4) tells that any single operand id is already an expression.

S  The variable 〈expression〉 implicitly represents the generated language of all such arithmetic expressions.

Borut Robič, Computability &
Computational Complexity

123

S  By applying productions repeatedly we derive more complex expressions.
The symbol ⇒ denotes a direct derivation, i.e. substitution of a variable by the
body (i.e. right-hand side) of a production for that variable.

S  Example (cont’d). Here is a derivation of the expression (id + id) ∗ id in the example CFG:

 〈expression〉 ⇒ 〈expression〉 ∗ 〈expression〉 … by (2)

 ⇒ (〈expression〉) ∗ 〈expression〉 … by (3)

 ⇒ (〈expression〉) ∗ id … by (4)

 ⇒ (〈expression〉 + 〈expression〉) ∗ id … by (1)

 ⇒ (〈expression〉 + id) ∗ id … by (4)

 ⇒ (id + id) ∗ id … by (4)

So the arithmetic expression (id + id) ∗ id has been derived from the variable <expression>.
That is, (id + id) ∗ id is in the language that can be generated from the variable <expression>.

4.2 Context-Free
Grammars and Languages

S  First we give a formal definition of the context-free grammar, CFG.

S  Definition. A context-free grammar (CFG) is a 4-tuple
where:

S  V is a finite set of variables,

S  T is a finite set of terminals,

S  P is a finite set of productions,
 each of which is of the form A → 𝛼,
 where A ∊ V and 𝛼 is a word from the language (V U T)*;

S  S is a special variable called the start symbol.

Borut Robič, Computability &
Computational Complexity

124

G = (V, T, P, S)

Borut Robič, Computability &
Computational Complexity

125

S  Conventions. To improve readability, we usually use:
S  A,B,C,D,E,S … for variables;

S  a,b,c,d,e,0,1,2,3,4,5,6,7,8,9,boldstrings … for terminals;

S  X,Y,Z … for symbols that may represent either variables or terminals;

S  u,v,w,x,y,z … for strings of terminals;

S  𝛼,𝛽,𝛾 … for strings of variables and terminals.

S  If A → 𝛼1, A → 𝛼2, …, A → 𝛼k are productions for variable A,
we can express them by

 A → |𝛼1|𝛼2|…|𝛼k (vertical bar is read ‘or’).

S  Example. The grammar from the previous example is now E → E + E | E ∗ E | (E) | id

Borut Robič, Computability &
Computational Complexity

126

S  Before we define the language generated by a CFG G = (V,T,P,S),
we need a few definitions.

Definitions. Let A → 𝛽 be a production and 𝛼,𝛾 ∊ (V U T)* arbitrary strings.

S  We say that we apply A → 𝛽 to 𝛼A𝛾 and obtain 𝛼𝛽𝛾
if we substitute A by 𝛽 in 𝛼A𝛾.
In this case we also say that 𝛼A𝛾 directly derives 𝛼𝛽𝛾 by A → 𝛽.

S  We say that two strings are in the relation G⇒
if the first directly derives the second one by one application of a production in G.

S  Let 𝛼1, 𝛼2, …, 𝛼m∊ (V UT)*, m ≥1, be strings.
If 𝛼1 G⇒𝛼2 ⋀ 𝛼2 G⇒𝛼3 ⋀ … ⋀ 𝛼m-1 G⇒𝛼m m
then we say that 𝛼1 derives 𝛼m in G and denote this fact by 𝛼1 G⇒*𝛼m .

 Note: The relation G⇒* is reflexive and transitive closure of G⇒.

Borut Robič, Computability &
Computational Complexity

127

S  Definition. The language generated by a CFG G = (V,T,P,S) is the set

 L(G) = {w|w ∊T * ⋀ S G⇒* w}.

So the language generated by G is the set of all terminal strings that can be derived from S.

S  Here are some further definitions that we will need in the following.

Definitions.

S  A language L is called context-free (CFL) if it is L(G) for some CFG G.

S  A string 𝛼 ∊ (V U T)* is called a sentential form if S G⇒* 𝛼.

S  Two grammars G 1 and G2 are said to be equivalent if L(G1) = L(G2).

Borut Robič, Computability &
Computational Complexity

128

S  Example. Consider a CFG G = (V, T, P, S), where
S  V = {S},
S  T = {a, b},

S  P = {S→ aSb, S→ ab}.

So, S is the only variable and a, b are terminals. There are two productions, S→ aSb and S→ ab.

What is L(G), the language generated by this G ?
S  By applying the production S→ aSb n-1 times, and then the production S→ ab, we have

S ⇒ aSb ⇒ aaSbb ⇒ a3Sb3 ⇒ …⇒ an-1Sbn-1 ⇒ anbn .
We have proved that S derives in G words of the form anbn , n ≥ 1; that is, SG⇒*anbn , for n ≥ 1.

S  But, can S derive anything else? No. We can show that the only strings in L(G) are anbn , n ≥ 1.
How? Each time S→ aSb is applied, the number of S 's in the sentential form remains the
same. After applying S→ ab, the number of S ‘s decreases by one. So after applying S→ ab,
no S's remain. Since both productions have an S on the left, the only order in which the
productions can be applied is: S→ aSb (some number of times) followed by one application
of S→ ab. Thus, L(G) ={anbn| n ≥ 1}.

4.3 Derivation Trees

S  Derivations can be displayed in terms of derivation (or parse) trees. These
are used in applications such as the compilation of programming languages.

S  Informally, the vertices of such trees are labeled with variables or terminals (possibly 𝜀).

S  If an interior vertex is labeled with variable A then
its sons are labeled left to right with X1, X2, …, Xk iff A→X1X2…Xk is a production.

S  Example (cont’d). The derivation E ⇒* (id + id) ∗ id is displayed by the following tree:

E ⇒ E ∗ E

 ⇒ (E) ∗ E

 ⇒ (E) ∗ id

 ⇒ (E + E) ∗ id

 ⇒ (E + id) ∗ id

 ⇒ (id + id) ∗ id

Borut Robič, Computability &
Computational Complexity

129

E

E

(

E

id

E +

E)

E

id id

*

Borut Robič, Computability &
Computational Complexity

130

S  We now define the notion of a derivation tree formally.

S  Definition. Let G = (V, T, P, S) be a CFG. A tree is called a derivation
(or parse) tree for G if:
1)  Every vertex has a label which is a symbol in V U T U {𝜀}.

2)  The label of the root is S.

3)  If a vertex is interior and has label A, then A must be in V.

4)  If a vertex n has label A and vertices nl, n2, …, nk are the sons of n
(from left to right) with labels X1, X2, …, Xk , respectively,
then A→X1X2…Xk must be a production in P.

5)  If vertex n has label 𝜀, then n is a leaf and is the only son of its father.

Borut Robič, Computability &
Computational Complexity

131

S  Example. Consider the grammar G = ({S,A}, {a,b}, P, S), where P
has productions

 S → aAS |a
 A → SbA|SS|ba

 Question: Is the following tree a derivation tree for G?

To answer this, we check whether the tree meets all the conditions of the previous definition. The
interior vertices are colored orange. The root is labeled S; its sons, from the left, are labeled a,A,S;
and we see that S→ aAS is a production of G. (Similarly we check every internal vertex whether it and
its sons correspond to a production in G.)
In this example, all the conditions are met; the tree is a derivation tree for G.

S

S

a

a

a

a b

S b A

A

Borut Robič, Computability &
Computational Complexity

132

S  A derivation tree is a natural description of the derivation of a
particular sentential form of the grammar G. Why?
S  Definition. Reading the labels of all leaves during the preorder travesal

of the tree, we obtain a string called the yield of the derivation tree.

S  Shortly we will prove the following:
 𝛼 is the yield of a derivation tree for G = (V, T, P, S) iff S G⇒* 𝛼.

S  Example(cont’d). The yield of the derivation tree below is aabbaa .

 Here, the yield consists of terminals only (but it is not always so).

a

a

a

a b

b

S

A

S

S

A

Borut Robič, Computability &
Computational Complexity

133

S  We will need one more new notion.
S  Definition. A subtree of a derivation tree is a particular vertex of the tree

together with all of its descendants, edges among them, and their labels.
If the root of a subtree is labeled A, then the subtree is called A-tree.
A subtree is just like a derivation tree, but the label of its root may not be the start symbol S of the grammar.

S  Example(cont’d). Below is a derivation tree and one of its A-trees
(yellow). The yield of this A-tree is abba (yellow leaves).

a

a

a

a b

b

S

A

S

S

A

Borut Robič, Computability &
Computational Complexity

134

S  The relationship between derivation trees and derivations.

S  Theorem. Let G = (V, T, P, S) be a CFG.
 Then S G⇒* 𝛼 iff there is a derivation tree for G with yield 𝛼.

S  Proof idea. Induction on the number of interior vertices of the tree. (Try it.) ⧠

Borut Robič, Computability &
Computational Complexity

135

S  Leftmost and rightmost derivations.

S  Definition. A derivation is said to be leftmost if at each step of the derivation
a production is applied to the leftmost variable. Similarly, a derivation is
rightmost if at each step a production is applied to the rightmost variable.

S  Example. The leftmost derivation corresponding to the tree below is

 S ⇒ aAS ⇒ aSbAS ⇒ aabAS ⇒ aabbaS ⇒ aabbaa
 ☝︎ ☝︎ ☝︎ ☝ ☝︎

 and the rightmost derivation is

 ︎S ⇒ aAS ⇒ aAa ⇒ aSbAa ⇒ aSbbaa ⇒ aabbaa
 ☝︎ ☝︎ ☝︎ ☝ ☝︎

a

a

a

a b

b

S

A

S

S

A

Borut Robič, Computability &
Computational Complexity

136

S  Ambiguity.

S  If w ∊ L(G) for a CFG G, then w has at least one derivation tree.
Corresponding to a particular derivation tree, w has a unique leftmost and a
unique rightmost derivation.

S  Definition. A CFG G is said to be ambiguous if some word has more than
one derivation tree.
Equivalently: A CFG is ambiguous if some word has more than one leftmost (rightmost) derivation.

S  Example. G = ({S,A,B},{a},{S → A|B, A → a, B → a}).
Note, that a has two derivation trees corresponding to
two derivations: S G⇒A G⇒ a and S G⇒B G⇒ a.

S  Definition. A CFL L is said to be inherently ambiguous if every CFG for L
is ambiguous.
Later we will see that such CFL's do exist !

a

S

A

a

S

B

4.4 Simplification of
 Context-Free Grammars

S  There are several ways to restrict the form of productions without
reducing the power of CFG’s. If L is a nonempty CFL then L can be
generated by a CFG G having the following properties:

S  Each variable and terminal of G appears in the derivation of some word in L.

S  There are no productions of the form A → B, where A and B are variables.

S  If 𝜀 ∉ L, there are no productions of the form A → 𝜀.
S  If 𝜀 ∉ L, we can require that

S  every production is of the form A → BC or A → b (Chomsky normal form)
where A, B, C are variables and b a terminal;

S  or, every production is of the form A → bγ (Greibach normal form)
where b ∊ T and γ∊ V* (a string of variables).

Borut Robič, Computability &
Computational Complexity

137

Borut Robič, Computability &
Computational Complexity

138

S  Elimination of useless symbols.

S  Of course, we want to eliminate all useless symbols from a grammar.

S  Definition. Let G = (V, T, P, S) be a grammar. A symbol X is useful if there exists
a derivation S ⇒* 𝛼X𝛽 ⇒* w for some 𝛼,𝛽, and w ∊ T*. Otherwise X is useless.

S  Lemma. Given a CFG G = (V, T, P, S) with L(G) ⧧ , we can effectively find an equivalent CFG

G’ = (V’, T, P’, S) such that for each A ∊ V’ there is a w ∊ T * so that A ⇒* w.

S  Lemma. Given a CFG G’ = (V’, T, P’, S), we can effectively find an equivalent CFG
G’’ = (V’’,T, P’’, S) such that for each X ∊V’’ UT there are 𝛼, 𝛽 ∊ (V’’ UT)* so that A ⇒*𝛼X𝛽.

S  By applying the lemmas in this order, we can convert a CFG G to the equivalent G’’ without useless
symbols. (Interestingly, applying them in the reverse order may fail to eliminate all useless symbols.)

S  Theorem. Every nonempty CFL is generated by a CFG with no useless symbols.

S  From now on we assume that grammars have no useless symbols.

;

Borut Robič, Computability &
Computational Complexity

139

S  Elimination of 𝜀-productions.

S  Definition. An 𝜀-production is a production of the form A→ 𝜀.

S  Clearly, if 𝜀 is in L(G), we cannot eliminate all 𝜀-productions from G. (Otherwise, 𝜀 would no longer
be in the generated language.) But if 𝜀 is not in L(G), we can eliminate all 𝜀-productions from G.

S  Theorem. If L = L(G) for some CFG G = (V, T, P, S), then L -{𝜀} can be
generated by a CFG G ’ that has no useless symbols and no 𝜀-productions.

S  Proof idea.

S  Determine for each A ∊ V whether A ⇒* 𝜀. If so, call A nullable.

S  Then replace each production B → X1X2…Xn by all productions formed by striking out some subset of those
Xi’s that are nullable, but do not include B → 𝜀, even if all Xi’s are nullable.

⧠

Borut Robič, Computability &
Computational Complexity

140

S  Elimination of unit productions.

S  Definition. A unit production is a production of the form A→ B.
The right-hand side must be a single variable; all other productions, including A → a and 𝜀-productions, are non-unit.

S  Theorem. Every CFL without 𝜀 can be generated by a grammar
that has no useless symbols, no 𝜀-productions, and no unit productions.

4.5 Chomsky Normal Form

S  Normal-form theorems state that all CFGs are equivalent to
grammars with certain restrictions on the form of productions.
The first such theorem is due to Noam Chomsky.

S  Theorem (Chomsky normal form). Every CFL without 𝜀 can be generated
by a grammar in which every production is of the form

 A → BC or
 A → a

 where A, B, C are variables and a is a terminal.

Borut Robič, Computability &
Computational Complexity

141

Borut Robič, Computability &
Computational Complexity

142

S  Proof (constructive).
S  Let L(G) be a CFL without 𝜀.
S  Find an equivalent CFG G1=(V,T,P,S) without useless variables, unit productions, and 𝜀-productions.
S  If a production of P has a single symbol on the right-hand side, that symbol must be a terminal, so the production is
 already in an acceptable form.
S  If a production of P does not have a single symbol on the right-hand side, it must be of the form A→X1X2…Xm (m ⩾ 2).
 (Here Xi may be a variable or a terminal.)

S  If Xi is a terminal, say a, then
S  introduce a new variable Ca
S  introduce a new production Xi→ a (which is in allowable form), and
S  replace Xi by Ca .
When this is done for all Xi that are terminals, we have a new set V ’ of variables and a new set P ’ of productions.
Let G2 = (V ’,T,P ’,S). We can show that L(G1) = L(G2). (Exercise.)

S  So L(G) is generated by a CFG G2 whose productions are either of the form A→a or A → B1B2…Bm (m ⩾ 2).
 (Here Bi are variables and a is a tereminal.)

S  If a production is A→B1B2…Bm , where m ⩾ 3, then
S  create new variables D1, D2, ..., Dm-2
S  replace the production by the productions A → B1D1,
 D1 → B2D2,
 ⋱
 Dm-3 → Bm-2Dm-2,
 Dm-2 → Bm-1Bm.

When done for all productions A→B1B2…Bm, m ⩾ 3, we have a set V ’’ and a set P ’’ of productions of the form A→ a or A→BC.
Let G3 = (V ’’,T,P ’’,S). We can show that L(G2) = L(G3); so L(G) = L(G3). (Exercise.)

 ⧠

4.6 Greibach Normal Form

S  There is another normal-form theorem that uses productions whose right-
hand sides start with a terminal symbol that is followed by variables only.
The theorem is due to Sheila Greibach.

S  Theorem (Greibach normal form). Every CFL without 𝜀 can be generated
by a grammar in which every production is of the form

 A → bγ
where A is a variable, b is a terminal, andγis a (possibly empty) string of
variables (γ∊ V *).

Borut Robič, Computability &
Computational Complexity

143

Borut Robič, Computability &
Computational Complexity

144

S  Proof idea (constructive).
S  Let L(G) be a CFL without 𝜀 where G = (V,T,P,S) is in Chomsky normal form and V = {A1 , A2 , ... , Am}.
S  Construct an equivalent CFG G1=(V,T,P,S) without useless variables, unit productions, and 𝜀-productions.

S  Modify the productions so that the following will be fulfilled: if Ai → Aj 𝛾 is a production, then j > i .
 To achieve this, introduce new variables B1 , B2 , ..., Bm . This returns only productions of the forms

 Ai → Aj𝛾, where j > i
 Ai → a𝛾, where a ∊ T
 Ai → a𝛾, where 𝛾 ∊ (V U {B1, B2, ..., Bi-1})*.

S  Modify all Am-productions, then all Am-1-productions, then all Am-2-productions, and so on..
 To modify Ak-productions (m ⩾k ⩾1), do as follows:

 For each Ak-production:
 locate in the right-hand side of the production the leftmost variable, say X;
 replace X by the right-hand sides of all X-productions.

 Now all A-productions have right sides beginning with a terminal.
 But B-productions may still have right-hand sides beginning with variables Ai . This corrects the next step.

S  Modify the productions for the new variables B1, B2, ..., Bm .

 For each B-production whose right-hand size begins with a variable, say Ai , do the following:
 replace Ai by the right-hand sides of all Ai -productions.
⧠

4.7 Inherently Ambiguous
 Context-Free Languages

S  It is easy to construct ambiguous CFGs. For example, the CFG with
productions S→A|B, A→a, B→a is ambiguous. (Why?)

S  More difficult is to find a CFL for which every CFG is ambiguous.
Such a CFL is said to be inherently ambiguous.
But, do such CFLs exist? Yes.

S  Theorem. The CFL L = {a
nb

nc
md

m|n,m ⩾1} U {a
nb

mc
md

n|n,m ⩾1}
is inherently ambiguous.

S  Proof. By contradiction. (Long and tedious. We omit it.) ⧠

Borut Robič, Computability &
Computational Complexity

145

4.8 Dictionary

context-free grammar kontekstno neodvisna gramatika context-free language kontekstno neodvisen jezik terminal
terminal production produkcija to derive izpeljati start symbol začetni simbol to apply (a production) uporabiti
(produkcijo) to directly derive neposredno izpeljati language generated generiran (izpeljan) jezik sentential form
stavčna oblika derivation tree drevo izpeljave yield (of a derivation tree) krošnja (drevesa izpeljave) subtree poddrevo
leftmost/rightmost derivation leva/desna izpeljava ambiguous dvoumen inherently ambiguous bistveno dvoumen
format of a production oblika produkcije useful/useless symbol potreben/nepotreben simbol 𝜀-production
𝜀-produkcija nullable variable uničljiva spremenljivka unit production enotska produkcija Chomsky normal form
normalna oblika Chomskega Greibach normal form normalna oblika Greibachove

Borut Robič, Computability &
Computational Complexity

146

S

5
Pushdown Automata

Borut Robič, Computability &
Computational Complexity

147

Contents

S  Introduction

S  Definitions

S  Pushdown automata and CFLs

Borut Robič, Computability &
Computational Complexity

148

5.1 Introduction

S  Just as regular expressions (and sets) are associated with a particular
machine--- the FA---so are the CFGs (and hence CFLs) associated with a
particular kind of machine---the pushdown automaton (PDA).

S  The PDA is essentially a FA having control of its input tape and a stack.

S  But there are differences: the PDA is a nondeterministic device (by definition),
and its deterministic version, DPDA, accepts just a proper subset of all CFLs.

S  Happily, this subset contains most programming languages.

Borut Robič, Computability &
Computational Complexity

149

Borut Robič, Computability &
Computational Complexity

150

S  The PDA has an input tape, a control unit, and a stack.

S  The stack is a string of symbols from some alphabet. The leftmost
symbol of the string is at the top of the stack.

S  The device is by definition nondeterministic, in each situation having
some finite number of choices for the next move.

tape

control unit

window
stack

top

Borut Robič, Computability &
Computational Complexity

151

S  The moves are of two types, regular moves and 𝜀-moves.
S  In the regular move, the input symbol is consumed.
 Depending on the

S  state q of the finite control,
S  input symbol a, and
S  top stack symbol Z,

there are finitely many alternatives:

S  i-th alternative consists of a

S  next state pi (for the finite control),

S  string 𝛾i (possibly empty) of stack symbols i (possibly empty) of stack symbols
to replace Z.

Now an alternative is nondet. selected and carried out

and the window advances (consumes) one symbol.

a

q

Ztop

a

pi

topmove
�i

Borut Robič, Computability &
Computational Complexity

152

S  (cont’d)
S  In the 𝜀-move, an input symbol is not consumed.
 Depending on the

S  state q of the finite control,
S  top stack symbol Z,

and independently of the input symbol ●,

there are finitely many alternatives:
S  i-th alternative consists of a

S  next state pi (for the finite control),

S  string 𝛾i (possibly empty) of stack symbols i (possibly empty) of stack symbols
to replace Z.

Now an alternative is nondet. selected and carried out

and the window does not advance.

S  Note: 𝜀-moves allow PDA to manipulate the stack without reading input symbols.

q

Ztop

pi

top
�i

move

Borut Robič, Computability &
Computational Complexity

153

S  We can now define the language accepted by a PDA. This can be done in
two ways: The language of PDA is the set of all words for which

1.  some sequence of moves causes the PDA to empty its stack.
This is the language accepted by empty stack.

2.  some sequence od moves causes the PDA to enter a final state.
This is the language accepted by final state.

S  We’ll see that the two definitions are equivalent, in the sense that
L is accepted by empty stack by some PDA iff L is accepted by final state by some (other) PDA.

S  The 2nd definition is more common. But by using the 1st definition
it is easier to prove the basic theorem of PDA, which states that

 L is accepted by a PDA iff L is a CFL.

5.2 Definitions

Borut Robič, Computability &
Computational Complexity

154
Borut Robič, Computability &

Computational Complexity
154

S  Definition. A pushdown automaton (PDA) is a 7-tuple
 , where:

S  is a finite set of states,
S  is the input alphabet,

S  is the stack alphabet,
S  is the initial state,
S  is the start symbol,

S  is the set of final states, and
S  is the transition function,

 i.e. a mapping from to finite subsets of

S  Note: can be viewed as a program of PDA. Every PDA has its own specific .

Q

⌃

�

q0 2 Q

F ✓ Q

�

M = (Q,⌃,�, �, q0, Z0, F)

�

Z0 2 �

Q⇥ (⌃ [{"})⇥ � Q⇥ �⇤.

�

Borut Robič, Computability &
Computational Complexity

155

S  Moves of the PDA.

S  The interpretation of the move
S  𝛿(q,a,Z) = {(p1,𝛾1), (p2,𝛾2), …, (pm,𝛾m)} is that the PDA in state q, with

input symbol a and Z the top symbol on the stack can, for any i, 1⩽i⩽m,
enter state pi, replace symbol Z by string 𝛾i , and advance the window i , and advance the window
one symbol. We call this the regular move.

S  𝛿(q,𝜀,Z) = {(p1,𝛾1), (p2,𝛾2), …, (pm,𝛾m)} is that the PDA in state q,
independently of the input symbol being scanned and with Z the top symbol
on the stack, can enter state pi, and replace Z by 𝛾i , for any i, 1⩽i⩽m. In i , for any i, 1⩽i⩽m. In
this case, the window is not advanced. We call this the 𝜀-move.

Conventions: the leftmost symbol of 𝛾i is placed highest on the stack and the rightmost symbol of i is placed highest on the stack and the rightmost symbol of
𝛾i lowest on the stack. We use a,b,c,… for input symbols, u,v,w,… for strings of input symbols, i lowest on the stack. We use a,b,c,… for input symbols, u,v,w,… for strings of input symbols,
capital letters for stack symbols, and Greek letters for strings of stack symbols.

Borut Robič, Computability &
Computational Complexity

156

S  Instantaneous descriptions of the PDA.

S  We want to describe the configuration of a PDA at a given instant. These

“snapshots” of PDA’s execution are formalized by instantaneous descriptions.

S  Definitions. An instantaneous description (ID) is a tripple (q,w,𝛾), where q is

a state, w a string of input symbols, and 𝛾 a string of stack symbols.

S  If is a PDA, we say that ID (q, ax, Z𝛽) can directly become

ID (pi, x, 𝛾i𝛽), --- written (q, ax, Z𝛽) M⊢ (pi, x, 𝛾i𝛽), --- if 𝛿(q, a, Z) contains (pi, 𝛾i).

Here, a may be an input symbol or 𝜀.

S  We write M⊢* for the reflexive and transitive closure of M⊢ and say that an ID I can

become ID J if I M⊢* J. We write I M⊢k J if I M⊢* J in exactly k moves.

The subscript M can be dropped whenever the particular PDA M is understood.

M = (Q,⌃,�, �, q0, Z0, F)

Borut Robič, Computability &
Computational Complexity

157

S  (cont’d)
S  Informally, the situation on the left can directly change to the situation on the right

only if the PDA M contains the instruction 𝛿(q, a, Z) = {..., (pi, 𝛾i), ...}. Whether or

not the change will actually take place depends on whether or not PDA will choose

the move (pi, 𝛾i).

a

q

Ztop
pi

top
�i

x
��

a
x

⊢

ID (q, ax, Z�) directly becomes ID (pi, x, �i �)
if �(q,a,Z) contains (pi, �i)

M

Borut Robič, Computability &
Computational Complexity

158

S  Accepted languages of the PDA.

S  Definitions. For PDA we define two languages:

S  L(M), the language accepted by final state, to be

 L(M) = {w ∊ | (q0, w, Z0) ⊢* (p, 𝜀, 𝛾) for some p ∊ F and 𝛾 ∊ 𝛤*}

S  N(M), the language accepted by empty stack, to be

 N(M) = {w ∊ | (q0, w, Z0) ⊢* (p, 𝜀, 𝜀) for some p ∊ Q}.

L(M) contains a word w if after reading w, M can be (nondeterminism!) in some final state.
N(M) contains a word w if after reading w, M can have (nondeterminism!) its stack empty.

If acceptance is by empty stack, final states are irrelevant; in this case, we usually let F = .

M = (Q,⌃,�, �, q0, Z0, F)

;

⌃⇤

⌃⇤

Borut Robič, Computability &
Computational Complexity

159

S  Example. Here is a PDA M accepting {wcwR|w ∊ (0+1)*} by empty stack.

S  Idea. Read input and, for each symbol read, push its representative (B for 0, G for 1) on the stack.
When c is read, change the state. Continue reading the input and, for each symbol read, pop the stack
symbol. If there are no more input symbols and R (bottom of the stack) has just been popped, the
input must have been of the form wcwR. So the stack is emptied to signal the acceptance of the input.

S  M = ({q1, q2}, {0,1,c}, {R,B,G}, 𝛿, q1, R,), where 𝛿 is defined as follows:

1. 𝛿(q1, 0, R) = {(q1, BR)} 2. 𝛿(q1, 1, R) = {(q1, GR)}
3. 𝛿(q1, 0, B) = {(q1, BB)} 4. 𝛿(q1, 1, B) = {(q1, GB)}
5. 𝛿(q1, 0, G) = {(q1, BG)} 6. 𝛿(q1, 1, G) = {(q1, GG)}

 7. 𝛿(q1, c, R) = {(q2, R)}
 8. 𝛿(q1, c, B) = {(q2, B)}

 9. 𝛿(q1, c, G) = {(q2, G)}
10. 𝛿(q2, 0, B) = {(q2, 𝜀)} 11. 𝛿(q2, 1, G) = {(q2, 𝜀)}

 12. 𝛿(q2, 𝜀, R) = {(q2, 𝜀)}

Note. Although PDA’s are nondeterministic by definition, the above M has just one choice of move in each situation.

;

Borut Robič, Computability &
Computational Complexity

160

S  Example. Here is a PDA M’ accepting {wwR|w ∊ (0+1)*} by empty stack.

S  Note. Now there is no symbol c indicating the middle of the input word (as in previous example). So, the M ’ will have
to guess that the middle of the word has been reached. How? Recall that PDA is by definition non-deterministic,
always choosing the right move when there is one. We will have to add to the program of M ’ the possibility of choosing.

S  Idea. Read input and, for each symbol read, push its representative (B for 0, G for 1) on the stack. Whenever the input
symbol “equals” the top stack symbol, the middle of the input word may have been reached. Non-deterministically
decide if this is so and, in this case, change the state (otherwise push the representative of the input symbol on the
stack). After the middle of the word has been guessed, continue reading the input and, for each symbol read, pop the
stack symbol if it represents the input symbol (if it doesn’t, the input word is not of the form wwR, so halt as there is no
instruction for this situation). If there are no more input symbols and R (bottom of the stack) has just been popped,
the input word must have been of the form wwR. So empty the stack to signal the acceptance of the word.
If M ’ never detected the middle of the input word, the word must have been 𝜀 or a single symbol, so accept the word.

S  M’ = ({q1, q2}, {0,1}, {R,B,G}, 𝛿, q1, R,), where 𝛿 is defined as follows:

1. 𝛿(q1, 0, R) = {(q1, BR)} 2. 𝛿(q1, 0, G) = {(q1, BG)}

3. 𝛿(q1, 1, R) = {(q1, GR)} 4. 𝛿(q1, 1, B) = {(q1, GB)}
5. 𝛿(q1, 0, B) = {(q1, BB), (q2, 𝜀)} 6. 𝛿(q1, 1, G) = {(q1, GG), (q2, 𝜀)}

7. 𝛿(q2, 0, B) = {(q2, 𝜀)} 8. 𝛿(q2, 1, G) = {(q2, 𝜀)
9. 𝛿(q2, 𝜀, R) = {(q2, 𝜀)} 10. 𝛿(q1, 𝜀, R) = {(q2, 𝜀)}

;

Borut Robič, Computability &
Computational Complexity

161

S  Informally, the example PDA that accepted {wcwR|w ∊ (0+1)*} was
‘‘deterministic’’ because at most one move was possible from any ID.
But, the formal definition of the deterministic PDA is more precise.

S  Definition. A PDA is called deterministic
if 𝛿 fulfills two conditions for every
1. 

2. 

What does that mean? Condition 1 prevents the possibility of a choice between an
𝜀-move and a regular move. Condition 2 prevents the possibility of a choice in the case
of an 𝜀-move and the possibility of a choice in the case of a regular move.

S  Note. Unlike FA, a PDA is assumed to be nondeterministic unless we state
otherwise. In this case, we denote it by DPDA (for deterministic PDA).

M = (Q,⌃,�, �, q0, Z0, F)

�(q, ", Z) 6= ; =) 8a 2 ⌃ : �(q, a, Z) = ;
8a 2 ⌃ [{"} : |�(q, a, Z)| 1

q 2 Q and Z 2 � :

5.3 Pushdown Automata
and Context-Free Languages

Borut Robič, Computability &
Computational Complexity

162
Borut Robič, Computability &

Computational Complexity
162

S  We saw that deterministic FA’s accept the same class of languages as
nondeterministic FA’s (i.e. regular sets).

S  Question: Do deterministic PDA’s accept the same class of languages as
nondeterministic PDA’s?

PDA’s can accept in two ways (by empty stack and final state). So there are two kinds of accepted languages,
L(M)’s and N(M)’s.

S  Question: Which of the two ways is meant by `accept’ in the above question?
S  Answer: It doesn’t matter! (We will see that the class of all L(M)’s and the class of all N(M)’s are the same.)

S  Question: Does this class contain any languages that we already know?

S  Answer: Yes. We will see that this class is the same as the class of all CFL’s.

S  Answer: No!

 {wwR|w ∊ (0+1)*} is accepted by a nondeterministic PDA but by no DPDA.

Borut Robič, Computability &
Computational Complexity

163

S  Equivalence of acceptance by final state and empty stack

S  Do acceptance by final state and acceptance by empty stack differ in their power? We
suspect the answer is no. To prove that, must prove that the class of languages accepted
by PDA’s by final state is the same as the class of languages accepted by PDA’s by empty
stack. Hence, we must show that if a language L is accepted by some PDA by final state,
then L is accepted by some PDA by empty stack---and vice versa. We can prove both.

S  Theorem. If L=L(M2) for some PDA M2, then L=N(M1) for some PDA M1.
S  Proof idea. Given an arbitrary L = L(M2), construct a PDA M1 that simulates M2

but erases the stack whenever M2 enters a final state. So we have L = N(M1). ⧠

S  Theorem. If L=N(M1) for some PDA M1, then L=L(M2) for some PDA M2.
S  Proof idea. Given an arbitrary L =N(M1), construct a PDA M2 that simulates M1

but enters a final state whenever M1 erases its stack. So we also have L = L(M2). ⧠

S  Summary: The class of languages accepted by PDA's by final state is
 the same as the class of languages accepted by PDA's by empty stack.

Borut Robič, Computability &
Computational Complexity

164

S  Equivalence of PDAs and CFLs

S  Is there any link between the languages accepted by PDAs and the regular or context-
free languages? We suspect that PDAs can accept more than just regular sets. (Why?)
So, can PDAs accept CFLs? To prove that, we must show that if L is a CFL, then L is
accepted by some PDA. If so, can PDAs accept more than CFLs? To prove that they
can’t, we must show that if L is accepted by a PDA, then L is CFL. Both can be proved.

S  Theorem. If L is a CFL, then there exists a PDA M such that L=N(M).
S  Proof idea. Let L be an arbitrary CFL. L can be generated by a CFG G in Greibach normal form. Construct a

PDA M that simulates leftmost derivations of G. (It is easier to have M accept by empty stack.) So L = N(M).⧠

S  Theorem. If L=N(M) for some PDA M, then L is a CFL.
S  Proof idea. Let M be an arbitrary PDA. Construct a CFG G in such a way that a leftmost derivation in G of a

sentence x is a simulation of the PDA M when given the input x. So L=L(G), a CFL. ⧠

S  Summary: The class of languages accepted by PDAs is exactly the class of CFLs.

Borut Robič, Computability &
Computational Complexity

165

S  Deterministic vs. nondeterministic PDAs

S  We now know that (nondeterministic) PDAs accept exactly CFLs. What
about deterministic PDAs? These are obtained by restricting PDAs, so it is
natural to ask whether they are powerful enough to accept all CFLs?

Question: Is the class of languages accepted by DPDAs the same as the class of CFLs?

Answer: No; there exist CFLs that are not accepted by any DPDA.

S  Theorem. {wwR|w ∊ (0+1)*} is accepted by a PDA but not by any DPDA.
S  Proof idea. Omitted. ⧠

S  Summary: Deterministic PDAs are less powerful than nondeterministic PDAs.

5.4 Dictionary

pushdown automaton skladovni avtomat stack sklad regular move običajen prehod, običajna poteza 𝜀-move tihi
prehod, tiha poteza language accepted by empty stack (final state) jezik sprejet s praznim skladom (končnim stanje)
basic theorem of PDA osnovni izrek skladovnih avtomatov stack alphabet skladovna abeceda instantaneous
description trenutni opis directly becomes neposredno preide v becomes preide v

Borut Robič, Computability &
Computational Complexity

166

S

6
Properties

of Context-Free Languages

Borut Robič, Computability &
Computational Complexity

167

Contents

S  The pumping lemma for CFLs

S  Closure properties of CFLs

S  Decision algorithms for CFLs

Borut Robič, Computability &
Computational Complexity

168

6.1 Introduction

S  This chapter parallels Chapter 3 (Properties of Regular Sets).
In this chapter, we shall:
S  state a pumping lemma for CFLs. The lemma can be used to show that

certain languages are not context-free.

S  consider some operations that preserve CFLs. Such closure properties are
useful not only for proving that certain languages are context-free, but
also for proving that certain languages are not context-free.

S  describe decision algorithms to answer certain questions about CFLs.
These questions include whether a given CFL is empty, finite, or whether
a given word is a member of a given CFL.

S  learn that some questions about CFLs cannot be answered by any algorithm !

Borut Robič, Computability &
Computational Complexity

169

6.2 The Pumping Lemma for CFLs

S  Recall: The pumping lemma for regular sets states that every
sufficiently long word in a regular set contains a short sub-word close to
the beginning of the word that can be repeated as many times as we
wish, and the obtained word will still be in the same regular set.

S  The pumping lemma for CFLs states that every sufficiently long word
in a CFL contains two short sub-words close together that can be
repeated, both the same (arbitrary) number of times, and the obtained
word will still be in the same CFL.

S  The formal statement of the pumping lemma is as follows.

Borut Robič, Computability &
Computational Complexity

170

Borut Robič, Computability &
Computational Complexity

171

S  Pumping Lemma (for CFLs). Let L be a CFL. Then there is a
constant n (depending on L only) such that the following holds:
if z is any word such that

 z ∊ L and |z|⩾ n,
then there are words u, v, w, x, y such that

 z = uvwxy,
 |vx|⩾ 1,
 |vwx|⩽ n, and
 ∀i ⩾ 0: uviwxiy ∊ L.

S  Informally. Given any sufficiently long word z in a CFL L, we can find two short sub-words v and x close together
that may be repeated, both the same arbitrary number of times, and the resulting word will still be in L.

S  Proof. Omitted. ⧠

vu w

vu wv v

z

uv

i
 wx

i
 y

x y

x yx x

Borut Robič, Computability &
Computational Complexity

172

S  Example.
S  Let L = {aibici|i⩾1}. We want to prove that L is not context-free.
S  The method is similar to that for regular sets.

S  Let n be the constant from the lemma.
S  Observe the word z = anbncn. (z is ‘good’ because z ∊ L and |z|= 3n ⩾ n.)
S  There are many ‘good’ partitions of z into u,v,w,x,y (so that z = uvwxy,|vwx|⩽ n,|vx|⩾1).
S  Now we ask: Where in anbncn can be v and x ?

S  Since |vwx|⩽ n, it is not possible for vx to contain both a’s and c’s. (Explain why.)
S  So vx can contain either a’s only or a’s and b’s or b’s only or b’s and c’s or c’s only.
S  We analyze each of the above alternatives:

S  If v and x consist of a’s only, then uv0wx0y = uwy has n b’s and n c’s but less than n a’s
 (because |vx|⩾1). Thus uv0wx0y is not in L.
S  If v and x consist of a’s and b’s, then uv0wx0y = uwy has more c’s than a’s or b’s, so it is not in L.
S  The other three alternatives are analyzed similarly. Each leads to the conclusion that uv0wx0y is not in L.

S  According to our method, this implies that L is not context-free.

 The example shows: There exist languages that are not context-free!
For such languages we’ll need a model of computation more powerful than PDA.

Borut Robič, Computability &
Computational Complexity

173

S  *Ogden’s Lemma.

S  There are certain non-CFLs for which the pumping lemma is of no help (e.g. L = {a ib
jc

id j|i, j ⩾1}).
We need a stronger version of the pumping lemma for CFLs that will allow us to focus on some small
number of positions in the word and pump them. (Such an extension is easy for regular sets. The result
for CFLs is much harder to obtain.) Here is a weak version of the so-called Ogden's lemma. Using this
lemma we can prove that the above L is not CFL.

S  Ogden’s Lemma. Let L be a CFL. Then there is a constant n (which may be the same as
for the pumping lemma) such that the following holds:
if z is any word such that

 z ∊ L and we mark any n or more places in z,
then there are words u, v, w, x, y such that

 z = uvwxy,
 vx has at least one marked place,
 vwx has at most n marked places, and
 ∀i ⩾ 0: uv

iwx
iy ∊ L.

S  Proof. Omitted. ⧠

6.3 Closure Properties for CFL’s

S  Some operations on languages preserve CFLs (in the sense that the operations applied to
CFLs return CFLs).

S  We say that the class of CFLs is closed under an operation if the operation applied to any
members of the class is a member of the class.

S  If the class of CFLs is closed under a particular operation, we call that fact
closure property of the class of CFLs.

S  We are particularly interested in effective closure properties of the class of CFLs. For such
properties there is exists an algorithm which constructs from given descriptors for CFLs
a descriptor for the CFL that is the result of applying the operation to these CFLs.

Borut Robič, Computability &
Computational Complexity

174

Borut Robič, Computability &
Computational Complexity

175

S  Theorem. The class of CFLs is closed under
S  union,
S  concatenation,
S  Kleene closure,
S  substitution (and hence homomorphism),
S  inverse homomorphism.

 Proof. Omitted. ⧠

S  Theorem. The class of CFLs is not closed under
S  intersection,
S  complementation.

 Proof. Omitted. ⧠

S  But: the class of CFLs is closed under intersection with regular sets:
Theorem. If L is a CFL and R is a regular set, then L ⋂ R is a CFL.

 Proof. Omitted. ⧠

6.4 Decision Algorithms for CFLs

S  We are now interested in decision algorithms for various decision problems
about CFLs; e.g. “Is a given CFL L empty (or nonempty)? Is L finite (or infinite)?
Is a given word in L?’’ For these problems, we will find decision algorithms.

S  There are other decision problems about CFLs: “Is the complement of L a
CFL? Is L cofinite? Are two CFGs equivalent? Is a CFG ambiguous?” We’ll find
tools for showing that no algorithm can do a particular job. Only later (Chap. 8)
we will actually prove that the above problems have no decision algorithms !!!

S  CFLs can be represented by CFGs, PDAs (empty stack) and PDAs (final state).
But we can algorithmically transform one representation into another, so our
results will not depend on the representation we choose. Let us choose CFGs.

Borut Robič, Computability &
Computational Complexity

176

Borut Robič, Computability &
Computational Complexity

177

S  Emptiness and finiteness of CFLs.

S  Theorem. There exist decision algorithms to determine if a CFL is:
1)  empty;

2)  finite;

3)  infinite.

S  Proof idea. Let G = (V, T, P, S) be a CFG.

S  To test whether L(G) is (non)empty, use the test to determine if a variable generates any string of terminals.
In particular: L(G) is nonempty iff the start symbol S generates some string of terminals.

S  To test if L(G) is (in)finite, find a CFG G’ = (V’,T,P ’,S) in Chomsky Normal Form with no useless symbols,
generating L(G) - {𝜀}. (Note: L(G’) is finite iff L(G) is finite.) Draw a directed graph with a vertex for each
variable in V’ and an arc from A to B if there is a production in P ’ of the form A→ BC or A→ CB (for any C).
Then L(G’) is finite iff the graph has no cycles.

⧠

Borut Robič, Computability &
Computational Complexity

178

S  Example. Consider the grammar G1 = (V, T, P, S) = ({A,B,C,S}, {a,b}, P, S), where P
consists of the following productions:

 S → AB
 A → BC | a
 B → CC | b
 C → a

G1 is in Chomsky Normal Form and has no useless variables. The corresponding graph
(see above) has no cycles, so L(G1) is finite.

S  Example. Let us add the production C → AB to the above grammar. The new grammar
G2 is still in Chomsky Normal Form and has no useless variables. The corresponding
graph (see below) has cycles, so L(G2) is infinite.

⧠

C

B

S

A

C

B

S

A

Borut Robič, Computability &
Computational Complexity

179

S  Membership.

S  Definition. The membership problem for CFGs is the question
``Given a CFG G = (V, T, P, S) and a word x ∊ T *, is x ∊ L(G) ?’’

S  Question. Does there exist a decision algorithm such that, given an
arbitrary CFG G and an arbitrary word x ∊ T *, answers the question
``Is x a member of L(G) ?’’

S  Answer. The answer is YES; there is the following naïve algorithm:

1.  Convert G to Greibach normal form (GNF) G’. /* Recall: L(G’) = L(G) – {𝜀} */
2.  If x = 𝜀 then test whether S G⇒*𝜀 else

/* Now x ∊ L(G’) iff x ∊ L(G), so focus on GNF G’. Note: every production of a GNF grammar
adds exactly one terminal to the string being generated. So, if x has a derivation in G’, then the
derivation has exactly |x| steps. Next, if every variable of G’ has ⩽ k productions, then there are ⩽ k|x|
leftmost derivations of words of length |x|. So, is x among them? */

 Try all such derivations systematically to see if x is among them.

Borut Robič, Computability &
Computational Complexity

180

S  (cont’d)
S  The naïve decision algorithm is inefficient because it may check

exponential number of derivations.

S  However, there is a better, more efficient decision algorithm,
called the CYK algorithm (for Cocke-Younger-Kasami).
This algorithm
S  is based on the dynamic programming technique, and

S  runs in O(n3) time, where n =|x|.

Borut Robič, Computability &
Computational Complexity

181

S  *The CYK algorithm (for Cocke-Younger-Kasami)

S  Let x be an arbitrary word of length n ⩾ 1, and G an arbitrary CFG in Chomsky normal form (CNF).

S  Let xij be the subword of x of length j beginning at position i. Note: 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ n-i+1.

S  We want to determine for each i and j and for each variable A, whether A G⇒* xij .
To achieve that, we make the following key observations :
S  [Case j =1] xij is just one symbol (terminal). Note: A G⇒* xij iff A → xij is a production.

S  [Case j >1] xij has at least 2 symbols (terminals). Note: A G⇒* xij iff there is some production A → BC and
some k (1 ⩽ k ⩽ j) such that B derives the first k symbols of xij (i.e. B G⇒* xik) and C derives the last j-k
symbols of xij (i.e. C G⇒* xi+k,j-k).

S  [Case j = n] There is just one subword, x1n , i.e. the whole x. Note: We must determine whether S G⇒* x1n .

Of course, several variables may generate xij ; let us collect them in the set Vij = {A|A G⇒* xij }.
Note: given j, the variable i can vary from 1 to n-j+1.

S  Algorithm idea. Compute the sets Vij by increasing j = 1, …, n while applying the notes in the
above cases [j=1], [j>1], and [j=n].

Borut Robič, Computability &
Computational Complexity

182

S  (cont’d)

begin /* CYK Algorithm

1) for i := 1 to n do

2) Vi1 := {A|A → a is a production ⋀ the ith symbol of x is a};

3) for j := 2 to n do

4) for i := 1 to n – j + 1 do

5) Vij := ;

6) for k := 1 to j – 1 do

7) Vij := Vij U {A|A → BC is a production ⋀ B ∊ Vik ⋀ C ∊ Vi+k,j-k }

 endfor

 endfor

end

;

6.5 Dictionary

pumping lemma for CFL lema o napihovanju za KNJ Ogden’s lemma Ogdenova lemma cofinite kofiniten CYK
algorithm algoritem CYK

Borut Robič, Computability &
Computational Complexity

183

S

7
Turing Machines

Borut Robič, Computability &
Computational Complexity

184

Contents

S  Introduction

S  The Turing machine model

S  Use of a Turing machine

S  Modifications of the Turing machine

S  Universal Turing machine

S  The first basic results

Borut Robič, Computability &
Computational Complexity

185

7.1 Introduction

S  What is algorithm? What is computation?

S  The algorithm was traditionally intuitively understood as a recipe, i.e., a finite list of
directives written in some language that tells us how to solve a problem mechanically. In
other words, the algorithm is a precisely described routine procedure that can be applied
and systematically followed through to a solution of a problem.

S  Definition (algorithm intuitively) An ‘‘algorithm’’ for solving a problem is a finite set
of instructions that lead the processor, in a finite number of steps, from the input data of
the problem to the corresponding solution.

S  Because there was no need to define the concept of the algorithm formally, it remained
firmly at the intuitive, informal level.

Borut Robič, Computability &
Computational Complexity

186

Borut Robič, Computability &
Computational Complexity

187

S  The need for a formal definition of the concept of algorithm was made clear during
the first decades of the 20th century as a result of events taking place in mathematics.
What happened?

S  At the beginning of the century, Cantor’s naive set theory was born. The theory
was very promising as it offered a common foundation to all fields of mathematics.
But Cantor’s set theory treated infinity incautiously and boldly. This called for a
response, which soon came in the form of logical paradoxes.

S  Since Cantor’s set theory was unable to eliminate them, formal logic was engaged.
Three schools of mathematical thought—intuitionism, logicism, and formalism—
contributed many important ideas and tools that enabled an exact and concise
mathematical expression and brought rigor to mathematical research.

S  Hilbert’s Program was a promising formalistic attempt to recover mathematics from
paradoxes. Unfortunately, the program was severely shaken by Gödel’s astonishing
discoveries about general properties of formal axiomatic systems and their theories.
So Hilbert’s attempt fell short of formalists’ expectations.

S  But the program left open a difficult question about the existence of an algorithm
for solving a certain problem---a question that led to the birth of Computability Theory.

Borut Robič, Computability &
Computational Complexity

188

S  The difficulty in answering this question was: How can we answer the question
“Is there an algorithm that solves a given problem?” if it is not clear what algorithm is?

S  Namely:
S  To prove that there exists an algorithm that solves the problem,

it would suffice to construct some recipe that actually solves the problem.

S  But to prove that such an algorithm does not exist
we should reject every possible recipe by showing that it does not solve the problem.

But there are infinitely many possible recipes! How can we reject all of them?
Answer: To accomplish such a proof, we need a model of computation, consisting of

1.  a formal characterization of the concept of the algorithm; that is, a formally defined property such that
all algorithms and algorithms only have this property;

2.  a formal definition of a realistic environment capable of executing (so characterized) algorithms.

3.  a formal description of the execution of (so characterized) algorithms on the environment.

Only by using a model of computation we could systematically eliminate all the possible recipes.

S  So the need for a model of computation became apparent. Here is the definition

Definition. (model of computation) A model of computation is a definition that formally
characterizes the basic notions of algorithmic computation, that is, the algorithm, its
environment, and the computation.

Borut Robič, Computability &
Computational Complexity

189

S  In the 1930s the search for a model of computation started and proceeded into different
directions. Eventually, several models of computation were proposed. Each direction
proposed its own models of computation. The models are:

S  𝜇-recursive functions (Kurt Gödel, Stephen Kleene)
S  general recursive function (Jacques Herbrand, Kurt Gödel)
S  𝜆-calculus (Alonzo Church)
S  Turing machine (Alan Turing)
S  Post machine (Emil Post)
S  Markov algorithms (Andrej Markov)

S  These models were completely different. Naturally, the following question arose:

 Which model (if any) is the ‘‘best’’, i.e. the ‘‘right’’ one?

The majority of researchers accepted the Turing machine as the model which most
adequately captures the basic concepts of computation.

S  Moreover, surprisingly, it was soon proved that the models are equivalent in the sense:

 What can be computed by one can also be computed by the others.

Borut Robič, Computability &
Computational Complexity

190

S  What about the intuitive understanding of the basic concepts of computation?

Is there any connection between the intuitively understood concepts of computation
(i.e. ‘‘algorithm’’, ‘‘computation’’ and ‘‘computable function’’) on the one hand,
and the formal models of computation on the other?

S  The answer is YES. Since all the known models of computation were proved to be
equivalent, although completely different, the following thesis was proposed:

S  Computability Thesis (also called Church-Turing thesis). The basic intuitive concepts
of computing are perfectly formalized as follows:

S  ‘‘algorithm’’ is formalized by Turing program

S  ‘‘computation’’ is formalized by execution of a Turing program in a Turing machine

S  ‘‘computable function’’ is formalized by Turing-computable function

S  The thesis was accepted by the majority of researchers. Nowadays the thesis is widely
accepted (and no one succeeded to refute it).

Borut Robič, Computability &
Computational Complexity

191

 ☞ ☞ ☞

The Computability Thesis established a bridge between our intuitive understanding of
the concepts of the “algorithm,” “computation,” and “computability” on the one hand,
and their formal counterparts defined by models of computation on the other.
In this way it finally enabled a mathematical treatment of these intuitive concepts.

7.2 The Turing Machine Model

S  The FAs and PDAs are somewhat limited: they can only read
symbols in succession from left to right from bounded input tapes.

S  The Turing machine (TM) also
has a tape with a window and
a control unit with a program.

S  But Turing machine can read
and write symbols anywhere on
the potentially infinite tape.

Borut Robič, Computability &
Computational Complexity

192

Borut Robič, Computability &
Computational Complexity

193

S  Definition. (Turing machine) The basic variant of the Turing machine has
the following components: a control unit containing a Turing program; a tape
consisting of cells; and a movable window over the tape, which is connected to
the control unit. The details are:

S  The tape is used for writing and reading the input data, intermediate data, and
output data (results). It is divided into equally sized cells, and is potentially infinite in
one direction (i.e., it can be extended in that direction with a finite number of cells).

Each cell contains a tape symbol belonging to a tape alphabet 𝛤={z1, …, zt}, t ⩾ 3.
The symbol zt is special, for it indicates that a cell is empty; for this reason it is
denoted by ⨆ and called the empty space. In addition to ⨆ there are at least two
additional symbols: 0 and 1. We will assume that z1 = 0 and z2 = 1.

The input data are contained in the input word. This is a word over an input
alphabet 𝛴, such that{0,1}⊆ 𝛴 ⊆ 𝛤-{⨆}. Initially, all the cells are empty (each
contains ⨆) except for the leftmost cells, which contain the input word.

Borut Robič, Computability &
Computational Complexity

194

S  The control unit is always in some state from a finite set of states Q = {q1, …, qs},
s ⩾ 1. We call q1 the initial state. Some states are called final; they are gathered in the
set F ⊆ Q. All the other states are non-final. If the index of a state is of no
importance, we use qyes and qno to refer to any final and non-final state, respectively.

There is a Turing program (TP) in the control unit. TP directs TM’s components.
TP is characteristic of the particular TM, i.e., different TMs have different TPs.
A TP is a partial function 𝛿: Q×𝛤→ Q×𝛤×{L,R,S}, called the transition function.

 Note. The TM is by definition deterministic, having at most one choice for a move in each situation.

We can view 𝛿 as a table Δ = Q×𝛤, where
S  Δ[qi, zr] = (qj, zw, D) if 𝛿(qi, zr) = (qj, zw, D) is an instr. of 𝛿,

S  Δ[qi, zr] = 0 if 𝛿(qi , zr)↑(undefined).

Without loss of generality, we can assume that there
is always a transition from a qno, and none from qyes.

S  The window can move over any cell. Then, the control unit can read a symbol
through the window, and write a symbol through the window, substituting the
previous symbol. In one step, the window can only move to the neighboring cell.

Borut Robič, Computability &
Computational Complexity

195

S  Before the TM is started, the following must take place:
S  a. an input word is written to the beginning of the tape;
S  b. the window is shifted to the beginning of the tape;
S  c. the control unit is set to the initial state.

S  From now on the TM operates independently, in a mechanical stepwise fashion as
instructed by its TP. If the TM is in a state qi ∊ Q and it reads a symbol zr ∊ 𝛤, then:

 if qi is a final state, then TM halts;
 else, if 𝛿(qi, zr)↑ (i.e. TP has no next instruction), then the TM halts;
 else, if 𝛿(qi, zr)↓= (qj, zw, D), then the TM does the following:

a)  changes the state to qj ;
b)  writes zw through the window;
c)  moves the window to the next cell in direction D ∊ {L,R} (for left and right), or leaves
 the window where it is (D = S, for stay).

S  Formally, a TM is a seven-tuple T = (Q,𝛴,𝛤,𝛿,q1,⨆,F). To fix a particular TM, we must fix Q,𝛴,𝛤,𝛿,F.
(end of definition)

zr

qi qj �(qi , zr) = (qj , zw , R)

zw

 L S R R

Borut Robič, Computability &
Computational Complexity

196

S  Example. Here is a TM T that computes the sum m+n of natural numbers. The input
data m,n are in the input word 1m

 01n; their sum is returned on the tape in the word 1m+n
after T halts. E.g., given input word 111011, T returns the word 11111.

S  Algorithm idea. If the first symbol of the input word is 1, then TM deletes it (instr.1), and then
moves the window to the right over all the symbols 1 (instr.2) until the symbol 0 is read. TM
then substitutes this symbol with 1 and halts (instr.3). But, if the first symbol of the input word
is 0, then TM deletes it and halts (instr.4).

S  Turing machine T. T’ s computation.

 T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F), where:
S  Q = {q1, q2, q3}
S  𝛴 = {0,1}

S  𝛤 = {0,1, ⨆}
S  F = {q3}

S  𝛿 has the following instructions:
1.  𝛿(q1, 1) = (q2, ⨆, R)

2.  𝛿(q2, 1) = (q2, 1, R)
3.  𝛿(q2, 0) = (q3, 1, S)

4.  𝛿(q1, 0) = (q3, ⨆, S)

Borut Robič, Computability &
Computational Complexity

197

S  Example. Here is another TM T’ that computes the sum m+n of natural numbers.

S  Algorithm idea. First, the window is moved to the right until ⨆ is reached. Then the window is
moved to the left (i.e., to the last symbol of the input word) and the symbol is deleted. If the
deleted symbol is 0, the machine halts. Otherwise, the window keeps moving to the left and
upon reading 0 the symbol 1 is written and the machine halts.

S  Turing machine T’. T’ ’s computation.

 T’ = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F), where:
S  Q = {q1, q2, q3, q4, q5}

S  𝛴 = {0,1} 𝛤 = {0,1, ⨆} F = {q5}
S  𝛿 has the following instructions:

1.  𝛿(q1, 1) = (q2, 1, R)
2.  𝛿(q1, 0) = (q2, 0, R)

3.  𝛿(q2, 1) = (q2, 1, R)
4.  𝛿(q2, 0) = (q2, 0, R)

5.  𝛿(q2, ⨆) = (q3, ⨆, L)
6.  𝛿(q3, 0) = (q5, ⨆, S)

7.  𝛿(q3, 1) = (q4, ⨆, L)
8.  𝛿(q4, 1) = (q4, 1, L)

9.  𝛿(q4, 0) = (q5, 1, S)

Borut Robič, Computability &
Computational Complexity

198

S  Definitions.
S  An instantaneous description (ID) of a TM is the string I = 𝛼1q𝛼2 , if the current

configuration of the TM is ,where the window is over the first symbol of 𝛼2
 and 𝛼2 ends at the rightmost non-blank symbol.

An ID is the ``snapshot’’ of a current configuration (status) of TM’s components between successive instructions.

S  An ID I can directly change to J -- written I ⊢ J -- if there is an instruction in TM’s
program whose execution changes I to J. The reflexive and transitive closure of ⊢ is ⊢* ;
if I ⊢* J , then we say that ID I can change to J.

S  Example.

a

qi

 �� ��

b c d fe g a

qj

b c fe gh

�(qi , d) = (qj , h, R)

I = abcqi defg J = abc hqj efgI ⊢ J

 ���� ����

q

 �� ��

⨆ ⨆

Borut Robič, Computability &
Computational Complexity

199

S  Example. Let us be given the following sequence of `snapshots’ (situations) of some
Turing machine while the machine executes its program 𝛿:

S  The computation is described by the following sequence of ID’s (snapshots):

 q1111011 ⊢ ⨆q211011 ⊢ ⨆1q21011 ⊢ ⨆11q2011 ⊢ ⨆11q3111

7.3 Use of a Turing Machine

There are three elementary tasks where TMs are used:

S  Function computation

 ``Given a function 𝜑 and arguments a1 ,…, ak , compute 𝜑(a1 ,…, ak).’’

S  Set recognition

 ``Given a set S and an object x, decide whether or not x ∊ S.’’

S  Set generation

 ``Given a set S, generate a list x1, x2, x3 ,… of exactly the members of S.’’

Borut Robič, Computability &
Computational Complexity

200

Borut Robič, Computability &
Computational Complexity

201

S  Function computation on TMs.

S  Each TM T induces, for any k ⩾ 1, a function 𝜑T that maps k words into 1 word.
We define 𝜑T as follows.

Definition. Let T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F) be a TM and k ⩾ 1. The k-ary proper
function of T is a partial function 𝜑T : (𝛴*)k → 𝛴*, defined as follows:

 If the input to T is k words u1,…, uk ∊ 𝛴*, then the value of 𝜑T at u1,…,uk
 is defined to be
 v , if T halts ∧ returns on the tape the word v ∧ v ∊ 𝛴* ;
 𝜑T (u1,…, uk) :=

 ↑, if T doesn’t halt ∨ the tape doesn’t have a word in 𝛴*.

S  The interpretation of u1,…,uk and v is arbitrary.
E.g., if we view u1,…,uk as encodings of natural numbers a1,…,ak, then 𝜑T can be
viewed as an arithmetical function (Nk → N), and v as encoding of the value 𝜑T (a1,…,ak).

(

Borut Robič, Computability &
Computational Complexity

202

S  In practice, however, we usually face the opposite task:

 ``Given a k-ary function 𝜑 : (𝛴*)k →𝛴*, find a TM T that can compute 𝜑’s values.’’
a

 That is, given 𝜑, we must construct a TMT such that 𝜑T = 𝜑.

S  The ability of TMs (the extent to which THs can compute 𝜑’s values) depends on 𝜑.
There are three kinds of 𝜑 that differ on how able (powerful) such a T can possibly be.
Informally, we say that a given function 𝜑 is:

S  computable if there exists a T that can compute 𝜑’s value for any argument;

S  partial computable if there is a T that can compute 𝜑’s value whenever 𝜑 is defined;

S  incomputable if there is no T that can compute 𝜑’s value whenever 𝜑 is defined.

Definition. Let 𝜑 : (𝛴*)k → 𝛴* be a function. Then:
S  𝜑 is computable if ∃TM that can compute 𝜑 anywhere on dom(𝜑) ∧ dom(𝜑) = (𝛴*)k ;
S  𝜑 is partial computable (p.c.) if ∃TM that can compute 𝜑 anywhere on dom(𝜑) ;
S  𝜑 is incomputable if there is no TM that can compute 𝜑 anywhere on dom(𝜑) .

Borut Robič, Computability &
Computational Complexity

203

S  Set recognition on TMs.

S  Each TM T induces a language L(T), the language accepted by T.
Here is the definition.

Definitions. Let T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F) be a TM and w ∊ 𝛴* a string.
We say that w is accepted by T if q1w ⊢* 𝛼1 p 𝛼2 , for some p ∊F and 𝛼1𝛼2 ∊𝛤*.
The language accepted by T is the set L(T) = {w|w ∊ 𝛴*∧w is accepted byT }.

So, a word is accepted by T if it causes T to enter a final state (if submitted as input).
The language accepted by T consists of exactly such words.

S  The interpretation of w is arbitrary.
E.g., we may view w as encoding of a natural number; then we view L(T) as the
set of natural numbers that are accepted by T.

Borut Robič, Computability &
Computational Complexity

204

S  In reality, however, we usually face the opposite task:

 ``Given a set S ⊆ 𝛴*, find a TM T that accepts S.’’
a

 That is, given a language (set) S, we must construct a TM T such that L(T) = S.

S  The ability of TMs (the extent to which TMs can recognize members/non-members of S)
depends on S. There are 3 kinds of S that differ on how able (powerful) such a T can possibly be.
Informally, we say that a set S is:
S  decidable if there exists a T that can decide the question ``Is x ∊ S?’’ for any x;
S  semi-decidable if there exists a T that answers YES to ``Is x ∊ S?’’ if x is in S;
S  undecidable if there is no T that answers YES/NO to ``Is x ∊ S?’’, for any x ∊ 𝛴*.

Definition. Let S ⊆ 𝛴* be a language (set). Then:
S  S is decidable if ∃TM that answers YES/NO to ``Is x ∊ S?’’, for any x ∊ 𝛴*.
S  S is semi-decidable if ∃TM that answers YES to ``Is x ∊ S?’’ whenever x ∊ S.
S  S is undecidable if there is no TM that answers YES/NO to ``Is x ∊ S?’’, for any x ∊ 𝛴*.

Borut Robič, Computability &
Computational Complexity

205

S  It looks that for some sets S we cannot algorithmically decide the question ``Is x ∊S ?’’

S  Why?

If S = L(T) is semi-decidable and x ∊ 𝛴* an arbitrary word, then:
S  If x is in S, then T will eventually halt on input x (and accept x).
S  But, if x is not in S, then T may not halt on input x.

For such an S, as long as T is still running on input x, we cannot tell whether

S  T will eventually halt (and accept/reject x) if we let T run long enough, or
S  T will run forever.

In other words:

S  If, in truth, x ∊ S, then T will (halt and accept x and) answer YES

S  If, however, in truth, x ∉ S, then
S  T may (halt and reject x and) answer NO; or
S  T may (never halt and) never answer NO.

Borut Robič, Computability &
Computational Complexity

206

S  Set generation on TMs

S  A TM T (not every!) may induce a language G(T), the language generated by T.
Here is the definition.

S  Definition. Let T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F) be a TM. T is called a generator if it
writes to its tape, in succession and delimited by #, (some) words from 𝛴*.
(We assume that # is in 𝛤- 𝛴.) The language generated by T is defined to be the set
G(T) = {w|w ∊ 𝛴*∧ T eventually writes w to the tape}.

S  Example. The words c, a, b are in the generated language G(T) = {c, a, b, …}

Borut Robič, Computability &
Computational Complexity

207

S  In practice, we usually face the opposite task:

 ``Given a set S, generate a list x1, x2, x3 ,… of exactly the members of S.’’
 That is, given a language (set) S, we must construct a TM T such that G(T) = S.

S  Observation. Some sets can be generated and others cannot.

Examples. The set N of natural numbers can be generated by an obvious
algorithm: 1, 2, 3, Also the set Z of integers can be generated by an
obvious algorithm: 0, 1, -1, 2, -2, 3, -3, ... And also the set Q of rational
numbers can be generated. How? And the set P of all primes too. How?
But, the sets R of all reals and the set of reals in the interval [0,1] cannot.

S  Questions: When can the elements of a given set S be generated (listed in a
sequence so that every element of S eventually appears in the sequence)?
When can the sequence be algorithmically generated, i.e., by a TM (algorithm)?
Can every countable set be algorithmically generated?

Borut Robič, Computability &
Computational Complexity

208

S  C.E. languages (sets)

S  Suppose that the elements of a given set S can be listed in a sequence so that every element
of S eventually appears in the sequence. If x is an arbitrary element of S, then x will
eventually appear in the list; it will appear as nth in order, for some n ∊ N. So we can
speak of the 1st , 2nd, 3rd, … nth , ... element of S. Because the elements of S can be
enumerated, we say that S is enumerable.

S  We are interested in enumerable sets that can be algorithmically generated, i.e. generated
(listed) by TMs. Such sets will be called computably enumerable. Here is the definition.

Definition. A set S is computably enumerable (c.e.) if S = G(T) for some TM T;
that is, if S can be generated by a Turing machine.

S  Theorem. A set S is c.e. iff S is semi-decidable.

Proof. Omitted. (See my book) ⧠

Borut Robič, Computability &
Computational Complexity

209

S  Summary. The relation between the classes of languages that we have met
until now is depicted below. We will prove later that semi-decidable and
undecidable languages actually exist.

regular sets

non-c.e. sets = undecidable sets

�*

CFL’s

decidable sets

c.e. sets = semi-decidable sets

7.4 Modifications of the Turing Machine

S  One reason for the acceptance of the TM as a general model of computation is that
the basic model of the TM is equivalent to many modified versions (that seem to
have increased computing power). We’ll give informal proofs of these equivalences.
Each version has one or several of the following modifications:

S  Finite storage

S  Multiple-track tape

S  Two-way infinite tape

S  Multiple tapes

S  Multidimensional tape

S  Nondeterministic program

S  In this section we give informal proofs of some of these equivalence.

Borut Robič, Computability &
Computational Complexity

210

Borut Robič, Computability &
Computational Complexity

211

TM with finite storage.

S  This variant V has in its control unit a finite storage capable of memorizing
k ⩾ 1 tape symbols and using them during the computation. The Turing
program (TP) is the function

S  Example. For k = 2 we have

S  Although V seems to be more powerful than the basic model T, it is not so;
T can compute anything that V can compute. We prove this by describing how
T can simulate V. (The other way round is obvious as T is a special case of V.)

�V : Q⇥ �⇥ �k ! Q⇥ �⇥ {L,R, S}⇥ �k.

Borut Robič, Computability &
Computational Complexity

212

TM with multiple-track tape.

S  This variant V has the tape divided into tk ⩾ 2 tracks. On each track there are
symbols from the alphabet 𝛤. The window displays tk-tuples of symbols, one
symbol for each track. The TP is

S  Example. For tk = 2 we have

S  Although V seems to be more powerful than the basic model T, it is not so;
T can compute anything that V can compute. We prove this by describing how
T can simulate V. (The other way round is obvious as T is a special case of V.)

�V : Q⇥ �tk ! Q⇥ �tk ⇥ {L,R, S}.

Borut Robič, Computability &
Computational Complexity

213

TM with two-way infinite tape.

S  This variant V has the tape unbounded in both directions. Formally, the TP is
the function

S  Although V seems to be more powerful than the basic model T, it is not so;
T can compute anything that V can compute. We prove this by describing how
T can simulate V. (The other way round is obvious as T is a special case of V.)

�V : Q⇥ � ! Q⇥ �⇥ {L,R, S}.

Borut Robič, Computability &
Computational Complexity

214

TM with multiple tapes.

S  This variant V has tp ⩾ 2 unbounded tapes. Each tape has its own window that
is independent of other windows. TP is

S  Example. For tp = 2 we have

S  Although V seems to be more powerful than the basic model T, it is not so;
T can compute anything that V can compute. We prove this by describing how
T can simulate V. (The other way round is obvious as T is a special case of V.)

�V :Q⇥�tp!Q⇥(�⇥{L,R, S})tp.

Borut Robič, Computability &
Computational Complexity

215

TM with multidimensional tape.

S  This variant V has a d-dimensional tape, d ⩾ 2. The window can move in d
dimensions, i.e., 2d directions L1, R1, L2, R2, …, Ld, Rd. The Turing program is

S  Example. For d = 2 we have

S  Although V seems to be more powerful than the basic model T, it is not so;
T can compute anything that V can compute. We prove this by describing how
T can simulate V. (The other way round is obvious as T is a special case of V.)

�V : Q⇥ � ! Q⇥ �⇥ {L1, R1, L2, R2, . . . , Ld, Rd, S}.

Borut Robič, Computability &
Computational Complexity

216

TM with nondeterministic program.

S  This variant V has a Turing program 𝛿 that assigns to each (qi, zr) a finite set
of alternative transitions The machine
nondeterministically chooses a transition from the set and performs it.

S  How does V choose a transition out of the current alternatives?

The following is assumed: the machine chooses a transition that leads it to a solution
(e.g., to a state qyes), if such transitions exist; otherwise, the machine halts.

The nondeterministic TM is not a reasonable model of computation because it can foretell the future when
choosing from alternative transitions. Nevertheless, it is a very useful tool, which makes it possible to define the
minimum number of steps needed to compute the solution (when a solution exists). This is important when we
investigate the computational complexity of problem solving. We will see that in the following chapters.

S  Although V seems to be more powerful than the basic model T, it is not so;
T can compute anything that V can compute. We prove this by describing how
T can simulate V. (The other way round is obvious as T is a special case of V.)

{(qj1 , zw1 , D1), (qj2 , zw2 , D2), . . .}.

Borut Robič, Computability &
Computational Complexity

217

S  The importance of the modifications of the TM.

S  Are the modifications of TM of any use in Computability Theory ?
The answer is yes. The modifications are useful when we try to prove the existence of a TM
for solving a given problem P. Usually, the construction of such a TM is easier if we choose a
more versatile modification of TM.

Sometimes, we can even avoid the complicated construction of the actual TM for solving P.
How? We do as follows:

1.  We devise an intuitive algorithm A (a ``recipe’’, finite list of instr.) for solving P.

2.  Then we say: ``By the Computability Thesis, there is a TM T that does the same as A.”

Then, we can refer to this T (as the true algorithm for solving P) and treat it mathematically.

S  Since none of the modifications is more powerful than the basic TM, this additionally
supports our belief that the Computability Thesis is true.

S  The computations on the modifications of TM can considerably differ in time (number of steps) and
space (number of visited cells). But this will become important only in Computational Complexity
Theory (where we will investigate the time and/or space complexity of problem solving).

7.5 Universal Turing Machine

S  In this section we will describe how Turing discovered a seminal fact
about Turing machines.
We will:
S  explain how TMs can be encoded (represented by words over an alphabet);

S  realize that TMs can read codes of other TMs and compute with them;

S  explain how Turing applied this to construct the Universal Turing Machine
(UTM), a special TM that can compute whatever is computable by any other TM.

S  explain how Turing’s discovery triggered the search for a physical realization
of the UTM, which in 1940s resulted in the first general-purpose computers.

Borut Robič, Computability &
Computational Complexity

218

Borut Robič, Computability &
Computational Complexity

219

S  Coding of TMs

S  Given a TM T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F), we want to encode T, i.e. represent T by
 a word over some coding alphabet.

S  How will we encode TM T ?
S  The coding alphabet will be {0,1}.
S  We’ll only encode 𝛿, but in such a way that Q,𝛴,𝛤,F, which determine the particular T,

can be restored from the encoded 𝛿. How will we encode TP 𝛿?

 1. If 𝛿(qi , zj) = (qk , zℓ , Dm) is an instruction of 𝛿,

 then we encode the instruction by the word
 K = 0i10j10k10ℓ10m where D1=L, D2=R, D3=S.

 2. In this way, we encode each instruction of 𝛿.

 3. From the obtained codes K1, K2, …, Kr we construct the code 〈𝛿〉 of 𝛿:
 〈𝛿〉 = 111K111K211 … 11Kr111

S  The code 〈T 〉 of the TM T can now be identified with 〈𝛿〉 (i.e. 〈T 〉 := 〈𝛿〉) .

Borut Robič, Computability &
Computational Complexity

220

S  Example.

S  What is the code 〈T 〉 of the first TM T that computes m+n (see Sect.7.2)?

S  The components of T were:
S  Q = {q1, q2, q3} or encoded: Q = {0,00,000}
S  𝛴 = {0,1}
S  𝛤 = {0,1, ⨆} or encoded: 𝛤 = {0,00,000} (note: 0=z1, 1=z2, ⨆=z3)
S  F = {q3}

 The Turing program 𝛿 of T had four instructions:
1.  𝛿(q1, 1) = (q2, ⨆, R) or encoded: K1 = 01001001000100
2.  𝛿(q2, 1) = (q2, 1, R) or encoded: K2 = 00100100100100
3.  𝛿(q2, 0) = (q3, 1, S) or encoded: K3 = 001010001001000
4.  𝛿(q1, 0) = (q3, ⨆, S) or encoded: K4 = 010100010001000

 Then the code of 𝛿 is
 〈𝛿〉 = 1110100100100010011001001001001001100101000100100011010100010001000111

Borut Robič, Computability &
Computational Complexity

221

S  Enumeration of TMs

S  We can interpret 〈T 〉 as the binary code of some natural number. We call this
number the index of T.

S  Example. The index of the TM T for computing m+n (see previous example) is
1331015301402912694716154818999989357232619946567. So, indexes are huge numbers.
This will not be an obstacle, because we will not use them in arithmetic operations.

S  Notice that some natural numbers are not indexes (because their binary codes do
not have the required form/structure resulting from the encoding method).

S To avoid this, we make the following convention:
Any natural number whose binary code is not of the required form is an index of the empty TM.

 The 𝛿 of this TM is everywhere undefined; hence, for every input, this TM immediately halts, in 0 steps.

S  Now, we can say: Every natural number is the index of exactly one TM.

Borut Robič, Computability &
Computational Complexity

222

S  Given an arbitrary natural number n ∊ N, we can restore n the components
Q, 𝛴, 𝛤, F that define the particular TM.
S  How? We (1) inspect the binary code of n to check if it is of the required form

111K111K211 … 11Kr111. If it is, we (2) partition this code into strings K1,K2,…,Kr
and by analyzing these we can collect all the information needed to restore all the
components 𝛿, Q, 𝛴, 𝛤, F of the TM T.

S  The restored TM can be viewed as the nth basic TM and be denoted by Tn .

S  By letting n run through 0,1,2, … we obtain the sequence

 T0 ,T1 ,T2 , …

 of Turing machines. Notice that this is an enumeration of all basic TMs.

Borut Robič, Computability &
Computational Complexity

223

S  The existence of a Universal Turing Machine

S  In 1936, using the enumeration of TMs, Turing discovered a seminal fact
about TMs. We state his discovery in the following proposition.

S  Proposition. There is a Turing machine that can compute whatever is
computable by any other Turing machine.

S  Proof idea. The idea is to construct a Turing machine U that will be capable
of simulating any other TM T. To achieve this, we use the method of proving
by Computability Thesis (CT):

a)  first, we describe the concept of the machine U and describe the intuitive algorithm
(that should be) executed by U ’s Turing program, and

b)  then we refer to CT to prove that U exists.

(After this we can, if we wish of course, actually construct U in full detail.)

Borut Robič, Computability &
Computational Complexity

224

S  Proof.
(a) The concept of the machine U is depicted below.

The control unit contains a Turing program
that executes an algorithm, which is intuitively
described on the next slide.

The input tape contains an input
word consisting of two parts: the
code 〈T 〉 of an arbitrary Turing
machine T = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F),
and an arbitrary word w.

The auxiliary tape is initially
empty. The machine U will use it
to record the current state in which
T would be at that time, and for
checking whether this state is a final
state of T.

The work tape is initially empty.
The machine U will use it in exactly
the same way as T would use its own
tape when given the input w.

Borut Robič, Computability &
Computational Complexity

225

 The Turing program of U should execute the following intuitive algorithm:
1.  Check if the input word is 〈T,w 〉, where 〈T 〉 is a code of some TM.

If it is not, halt.

2.  From 〈T 〉 restore F and write 〈q1, F 〉 to the auxiliary tape.

3.  Copy w to the work tape and shift its window to the beginning.

4.  // Let the auxiliary tape have 〈qi , F 〉 and the work tape window scan zr .

If qi ∊ F, halt. //T would halt in the final state qi .

5.  On the input tape, search in 〈T 〉 for the code of the instruction 𝛿(qi , zr) =…

6.  If not found, halt. //T would halt in the non-final state qi .

7.  // The instruction 𝛿(qi , zr) =… was found and is 𝛿(qi , zr) = (qj , zw , D).

On the work tape, write the symbol zw and move the window in direction D.

8.  On the auxilliary tape, replace 〈qi , F 〉 by 〈qj , F 〉.

9.  Return to step 4.

S  (b) This algorithm can be executed by a human. So, by the Computability Thesis, there
 is a TM U = (QU, 𝛴U, 𝛤U, 𝛿U, q1, ⨆, FU) whose program 𝛿U executes this algorithm.
 We call U the Universal Turing Machine (UTM).
⧠

Borut Robič, Computability &
Computational Complexity

226

S  Construction of an UTM

S  The universal TM U was actually constructed (i.e. described in detail).

S  It was to be expected that 〈U 〉 would be a huge sequence of 0s and 1s.
S  Indeed, the code 〈U 〉 constructed by Penrose & Deutsch in 1989 had ≈ 5,500 bits.

S  But there are other TMs (basic model) that are equivalent to U.

S  So, there are other universal TMs (each differs from U but does the same as U).

S  What is the simplest UTM?
S  We focus on UTMs with no storage and a single two-way infinite tape with one track.

S  How shall we measure the `simplicity’ of such UTMs?

S  Shannon proposed the product |QU|·|𝛤U| (the maximal number of instructions in 𝛿U);

S  A more realistic measure would be the actual number of instructions in 𝛿U.

Borut Robič, Computability &
Computational Complexity

227

S  Soon it became clear that there is a trade-off between |QU| and |𝛤U|; that is,
|QU| can be decreased if |𝛤U| is increased, and vice versa.

S  So the researchers focused on different classes of UTMs.
S  Such a class is denoted by UTM(s,t), where s,t ⩾ 2, and by definition contains

all UTMs with s states and t tape symbols.

S  In 1996, Rogozhin (Rogožin) constructed UTMs in the classes
S  UTM(2,18), … the UTM with 2 states and 18 tape symbols
S  UTM(3,10),
S  UTM(4,6),
S  UTM(5,5),
S  UTM(7,4),
S  UTM(10,3),
S  UTM(24,2). ... the UTM with 24 states and 2 tape symbols

 Of these, the U ∊ UTM(4,6) has the smallest number of instructions: 22.

S  But the search for even simpler UTMs continues.

Borut Robič, Computability &
Computational Complexity

228

S  The importance of the Universal Turing Machine

S  Turing’s discovery of a universal TM was a theoretical proof that
a general-purpose computing machine is possible, at least in principle.

S  Turing was certain that such a machine could be built in reality:

 It is possible to construct a physical computing machine that can
compute whatever is computable by any other physical computing machine.

 He envisaged something that is today called the general-purpose computer.

Borut Robič, Computability &
Computational Complexity

229

S  Practical consequences: General-purpose computer

S  The construction of a general-purpose computing machine started in the1940s.
Researchers developed the first such machines, now called computers.
S  For example, ENIAC, EDVAC, IAS. By the mid-1950s, a dozen other computers emerged.

S  But, the development of early computers did not closely follow the structure of
the universal TM. The reasons for this were

S  the desire for the efficiency of the computing machine and

S  the technological conditions of the time.

Borut Robič, Computability &
Computational Complexity

230

S  If we abstract the essential differences between these computers and the UTM,
and describe the differences in terms of TMs, we find the following:

S  Cells are now enumerated.
S  The program is written on the tape (instead of the control unit)
S  The control unit has:

S  direct access to any cell in constant time (so there is no window).
S  different duties. In each step, it typically does the following:

1.  reads an instruction from a cell;
2.  reads operands from cells;
3.  executes the operation on the operands;
4.  writes the result to a cell.

S  new components: program counter (to point the cell with the next instruction to be read),
registers (for the operands of the operation), accumulator (for the result of the operation).

S  Due to these differences, terminological differences also arose: main memory (≈tape), program
(≈Turing program), processor (≈control unit), memory location (≈cell), and memory address (≈cell
number). The general structure of these computers was called the von Neumann architecture.

7.6 The First Basic Results

S  In the previous chapters we defined some of the basic notions and concepts of
the Computability Theory. In particular:

S  We formally defined the notions of algorithm, computation, and computable function;

S  We defined a few new notions, such as the decidability and semi-decidability of a set.

S  We can now start using these notions and deduce the first theorems of
Computability Theory.

S  In this short section we will list several simple theorems about decidable and
semi-decidable sets (which will play key roles in the next chapter).

Borut Robič, Computability &
Computational Complexity

231

Borut Robič, Computability &
Computational Complexity

232

S  Theorems.

a)  S is decidable ⟹ S is semi-decidable

b)  S is decidable ⟹ is decidable

c)  S and are semi-decidable ⟹ S is decidable

d)  A and B are semi-decidable ⟹ A ⋂ B and A U B are semi-decidable

e)  A and B are decidable ⟹ A ⋂ B and A U B are decidable

Proofs. Not difficult. Try it and just use definitions. ⧠

S  Here, we will omit the following important theorems:

S  the Padding Lemma,

S  the Parametrization (s-m-n) Theorem, and

S  the Recursion (Fixed-Point) Theorem.

S

S

7.7 Dictionary

Turing machine Turingov stroj naive set theory naivna teorija množic paradox paradoks, protislovje intuitionism
intuicionizem logicism logicizem formalism formalizem Hilbert’s program Hilbertov program model of computation
računski model 𝜇-recursive function 𝜇-rekurzivna funkcija general recursive functions splošno rekurzivna funkcija 𝜆-
calculus 𝜆-račun Post machine Postov stroj Markov algorithms algoritmi Markova, Markovski algoritmi
computability thesis teza o izračunljivosti tape trak cell celica tape alphabet tračna abeceda empty space presledek
input word vhodna beseda input alphabet vhodna abeceda control unit nadzorna enota state (initial, final)
stanje(začetno, končno) Turing program Turingov program transition function funkcija prehodov window okno
instantaneous description trenutni opis directly changes neposredno preide changes preide elementary task osnovna
naloga function computation računanje (vrednosti) funkcij set recognition razpoznavanje množic set generation
generiranje množic k-ary proper function k-mestna lastna funkcija computable function izračunljiva funkcija partial
computable function parcialna izračunljiva funkcija incomputable function neizračunljiva funkcija language accepted
by jezik, ki ga sprejme decidable odločljiv semi-decidable polodločljiv undecidable neodločljiv to halt ustaviti se
language generated by jezik, ki ga generira enumerable prešteven computably enumerable (c.e.) izračunljivo prešteven
(c.e.) finite storage končni pomnilnik multiple-track večsledni two-way infinite dvosmerni multiple-tape večtračni
multidimensional večdimenzionalni universal TM univerzalni TS coding kodiranje index indeks enumeration
oštevilčenje general-purpose splošno namenski

Borut Robič, Computability &

Computational Complexity
233

S

8
Undecidability

Borut Robič, Computability &
Computational Complexity

234

Contents

S  Computational Problems

S  Problem solving

S  An incomputable problem – the Halting problem

S  Other incomputable problems

Borut Robič, Computability &
Computational Complexity

235

8.1 Computational Problems

S  In previous chapter we explained:
S  how the values of functions can be computed,

S  how sets can be recognized, and

S  how sets can be generated.

All of these are elementary computational tasks in the sense that
they are all closely connected with the Turing machine.

S  However, in practice we are confronted with other kinds of problems
that require certain computations to yield their solutions. All such
problems we call computational problems.

Borut Robič, Computability &
Computational Complexity

236

Borut Robič, Computability &
Computational Complexity

237

S  Decision problems and other kinds of computational problems

S  We define the following four kinds (classes) of computational problems:

S  Decision problems (also called yes/no problems). The solution of a
decision problem is the answer YES or NO (The solution is a single bit.)

S  Examples: Is there a prime number in a given set of natural numbers?

 Is there a Hamiltonian cycle in a given graph?

S  Search problems. Given a set S and a property P, the solution of the
search problem is an element of S such that the element has the property P.
(The solution is an element of a set.)

S  Examples: Find the largest prime number in a given set of natural numbers.

 Find the shortest Hamiltonian cycle in a given weighted graph.

Borut Robič, Computability &
Computational Complexity

238

(cont’d)

S  Counting problems. Given a set S and a property P, the solution of a
counting problem is the number of elements of S that have the property P.
(The solution is a natural number.)

S  Examples: How many prime numbers are in a given set of natural numbers?

 How many Hamiltonian cycles has a given graph?

S  Generation problems (also called enumeration problems). Given a set S
and a property P, the solution of a generation problem is a list of elements of
S that have the property P.
(The solution is a sequence of elements of a set.)

S  Examples: List all the prime numbers in a given set of natural numbers.

 List all the Hamiltonian cycles of a given graph.

Borut Robič, Computability &
Computational Complexity

239

S  Which of these kinds of problems should we focus on?

S  Answer: We will focus on the decision problems.

Why? Because the decision problems ask for the simplest possible solutions, i.e.
solutions representable by a single bit. (We are pragmatic and hope that this
will make our study of other kinds of computational problems simpler.)

S  Warning: Our choice does not imply that other kinds of computational
problems are not interesting—on the contrary. We only want to postpone
their treatment until the decision problems are better understood.

8.2 Problem Solving

S  Now the following question immediately arises:

Can we use the accumulated knowledge
about the three elementary computational tasks
to solve other kinds of computational problems?

S  We will explain how this can be done for decision problems.
In particular, we will
1.  establish a link between sets (formal languages) and decision problems

2.  and apply our knowledge about sets (formal languages) to decision problems.

Borut Robič, Computability &

Computational Complexity
240

Borut Robič, Computability &
Computational Complexity

241

S  Language of a decision problem.

S  There is a link between decision problems and sets, which enables us to reduce the
questions about decision problems to questions about sets. We uncover it in 4 steps.

1.  Let D be a decision problem.

2.  We are usually faced with a particular instance d of the problem D. The instance d is
obtained from D by replacing the variables in the definition of D with actual data.
The problem D can be viewed as the set of all the possible instances of D. We will say
that an instance d ∊ D is positive/negative if the answer to d is YES/NO, respectively.

 So: Let d be an instance of D.

Example. Let DPrime = “Is n a prime number?” be a decision problem. If we replace the
variable n by actual data, say 4, we obtain the instance d1 = “Is 4 a prime number?” of DPrime.
This instance is negative because its solution is the answer NO. In contrast, since 2009 we
know that the solution to d2 = “Is 243112609-1 a prime number?” is YES, so d2 is positive. ⧠

Borut Robič, Computability &
Computational Complexity

242

3.  But how can we compute the answer to the instance d, say on a Turing machine?
In the natural-language description of d there can be various actual data (numbers,
matrices, graphs, …). However, to compute the answer on a machine—be it an
abstract model such as the TM or a modern computer—we must represent these
actual data in a form that is understandable to the machine. How?

Since any machine uses some alphabet 𝛴 (e.g. 𝛴 = {0, 1}), we must choose a
function that will transform (code) every instance of D into a word in 𝛴*. We call such a
function the coding function and denote it by ‘code’. Thus, code : D → 𝛴*, and
code(D) is the set of codes of all instances of D. We will write 〈d 〉 instead of code(d).

Example. The instances of the problem DPrime= “Is n a prime number?” can be encoded
by the function code : DPrime→{0,1}* that maps a number n to its binary representation.
For example, 〈“Is 4 a prime number?”〉 = 100 and 〈“Is 5 a prime number?”〉 = 101. ⧠

So: Let code : D → 𝛴* be a coding function.

Borut Robič, Computability &
Computational Complexity

243

4.  Now we could search for a TM that will compute the answer to d when given 〈d 〉.
But, we will proceed differently! How?

 Gather the codes of all the positive instances of D in a set L(D).

 L(D) is a subset of 𝛴*, so it is a formal language. It is associated with the problem D.

Here is its official definition.

Definition. The language of a decision problem D is the set L(D) which is defined
by L(D) = {〈d 〉 ∊ 𝛴* |d is a positive instance of D}.

Example. The language of the decision problem Dprime = “Is n a prime number?” is the
set L(DPrime) = {10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 110101, … }. ⧠

S  Now observe that the following relation holds:

 d ∊ D is positive ⟺ 〈d 〉 ∊ L(D) (❉)

 This is the link between decision problems and sets (formal languages).

Borut Robič, Computability &
Computational Complexity

244

S  What did we gain by this? The equivalence ❉ tells us that computing the answer
to the instance d can be replaced with deciding whether or not 〈d 〉 is in L(D).
That is:

Solving a decision problem D can be reduced to recognizing the set L(D) in 𝛴*.

The answer to
the instance d

of D

determine
where is 〈d 〉

relative to L(D)
can be found if we

Borut Robič, Computability &
Computational Complexity

245

S  The link ❉ is important because it enables us to apply---when solving decision
problems---all the theory that we developed to recognize sets.

S  Question: What does the recognizability of L(D) tell us about the solvability of D ?

S  L(D) is decidable ⇒ There is an algorithm that, for any d ∊ D, answers YES or NO.
Proof. There is a TM that, for any 〈d 〉 ∊ 𝛴*, decides whether or not 〈d 〉 ∊ L(D). Then apply ❉. ⧠

S  L(D) is semi-decidable ⇒ Then there is an algorithm that,

S  for any positive d ∊ D, answers YES;

S  for a negative d ∊ D, may or may not answer NO in finite time.

Proof. There is a TM that, for any 〈d 〉 ∊ L(D), accepts 〈d 〉. However, if 〈d 〉 ∉ L(D), the algorithm
may or may not reject 〈d 〉 in finite time. Then apply ❉. ⧠

S  L(D) is undecidable ⇒ There is no algorithm that, for any d ∊ D, answers YES or NO.
Proof. There is no TM capable deciding, for any 〈d 〉 ∊ 𝛴*, whether or not 〈d 〉 ∊ L(D). Then apply ❉. ⧠

Borut Robič, Computability &
Computational Complexity

246

S  We can now extend our terminology about sets to decision problems.

Definition. Let D be a decision problem. We say that the problem

S  D is decidable (or computable) if L(D) is a decidable set;
S  D is semi-decidable if L(D) is a semi-decidable set;
S  D is undecidable (or incomputable) if L(D) is an undecidable set.

S  Terminology.

Instead of a decidable/undecidable problem
we can say computable/incomputable
problem. But the latter notion is more
general: it can be used with all kinds of
computational problems, not only decision
problems. The terms solvable/unsolvable is
even more general: it addresses all kinds
of computational and non-computational
problems.

8.3 There is an Incomputable Problem
Halting Problem

S  We now know what is a decidable, semi-decidable, or undecidable decision problem.

S  But, we do not know whether there exists any semi-decidable (but not decidable) or
any undecidable problem. How can we find such a D (if there is one at all)?

S  In 1936, Turing succeeded in this. He was aware of the fact that difficulties in
obtaining computational results are caused by those TMs that may not halt.
It would be beneficial, he thought, if we could check, for any TM T and any input
word w, whether or not T halts on w.

S  If such a checking were possible, then, given an arbitrary pair ⟨T,w⟩, we would first
check ⟨T,w⟩ and then, depending on the outcome of the checking, we would either
start T on w, or try to improve T so that it would halt on w, too.

Borut Robič, Computability &
Computational Complexity

247

Borut Robič, Computability &
Computational Complexity

248

S  Halting Problem

S  This led Turing to define a decision problem, called the Halting Problem.

Definition. The Halting Problem DHalt is defined by

 DHalt = “Given a TM T and w ∊ 𝛴*, does T halt on w?”

S  Then Turing proved the following theorem.

Theorem. The Halting Problem DHalt is undecidable.

Comment. This means that there exists no algorithm capable of answering,
for arbitrary T and w, the question “Does T halt on w?”
So, any algorithm whatsoever, which we might design now or in the future for
answering this question, will fail to give the answer for at least one pair T, w.

Borut Robič, Computability &
Computational Complexity

249

S  Proof.

S  Before we go to the proof, we introduce two sets that play an important role
in the proof. These are called the universal and diagonal languages, respectively.

Definition. The universal language, dented by K0, is the language of the
Halting Problem, that is, K0 = L(DHalt) = { ⟨T, w⟩| T halts on w }.

 The second language is obtained from K0 by imposing the restriction w :=⟨T ⟩.

Definition. The diagonal language, dented by K, is defined by
 K = { ⟨T, T ⟩| T halts on ⟨T ⟩ }.

S  Note:
S  K is the language of the problem DH = “Given a TM T, does T halt on ⟨T ⟩?”

S  DH is a subproblem of DHalt (since it is obtained from Dhalt by fixing w to w = ⟨T ⟩).

Borut Robič, Computability &
Computational Complexity

250

S  We now proceed to the proof.
 The plan is:

S  prove (in a lemma) that K is an undecidable set;
S  this will imply that K0 is undecidable and, hence, Dhalt is an undecidable problem.

S  The lemma is instructive; it applies a cunningly defined TM S to its own code ⟨S⟩.

 Lemma. The set K is undecidable.
Proof of the lemma. (The proof is by contradiction).

(★) Suppose that K is a decidable set.
S  Then there must exist a TM DK that, for any T, answers ⟨T,T ⟩ ∊ ? K with answer
 YES , if T halts on ⟨T ⟩;
 DK (⟨T,T ⟩) =

 NO, if T doesn’t halt on ⟨T ⟩.
S  Now we construct a new TM S.

Our intention is to construct S in such a way that, when given as input its own code ⟨S ⟩,
S will expose the incapability of DK to predict whether or not S will halt on ⟨S ⟩.

(

Borut Robič, Computability &
Computational Complexity

251

 The TM S is:

S  S operates as follows. The input to S is the code ⟨T ⟩ of an arbitrary TM T. S doubles
⟨T ⟩ into ⟨T,T ⟩, sends this to DK, and starts it. DK eventually halts on ⟨T,T ⟩ and
answers either YES or NO to the question ⟨T,T ⟩ ∊ ? K. If DK has answered YES, then
S asks DK again the same question. If, however, DK has answered NO, then S outputs
its own answer YES and halts.

S  But S is shrewd: if S is given as input its own code ⟨S ⟩, it puts the supposed DK in
insurmountable trouble. Let us see why.

Given the input ⟨S ⟩, S doubles it into ⟨S,S ⟩ and hands it over to DK, which in finite
time answers the question ⟨S,S ⟩ ∊ ? K with either YES or NO.

Borut Robič, Computability &
Computational Complexity

252

The consequences of the answers to ⟨S,S ⟩ ∊ ? K are:

a)  Suppose that DK has answered YES. Then S repeats the
question ⟨S,S ⟩∊ ?K to DK, which in turn repeats its
answer DK (⟨S,S ⟩) = YES. So S cycles and will not halt.
But, at the same time, DK repeatedly predicts just the
opposite (that S will halt on ⟨S ⟩). So in (a) DK fails to compute the correct answer.

b)  Suppose that DK has answered NO. Then S returns to the environment its own
answer and halts. But just before that DK has computed DK (⟨S,S ⟩) = NO and thus
predicted that S will not halt on ⟨S ⟩. So, in the case (b) DK fails to compute the
correct answer.

Thus, DK is unable to correctly decide the question ⟨S,S ⟩ ∊ ? K. But this contradicts
our supposition (★) that K is a decidable set and DK its decider. So K is not decidable.

The lemma is proved.

S  Since K is undecidable, so is the problem DH . But DH is a subproblem of DHalt .

 So the Halting Problem Dhalt is undecidable too. ⧠

S

S S

8.4 The Basic Kinds of Decision Problems

S  Now we know that besides decidable problems there also exist
undecidable problems.

S  What about semi-decidable problems? Do they exist? Are there
undecidable problems that are semi-decidable? That is, are there
decision problems such that only their positive instances are
guaranteed to be solvable?

S  The answer is yes. In this section we explain why this is so.

Borut Robič, Computability &
Computational Complexity

253

Borut Robič, Computability &
Computational Complexity

254

S  The are undecidable sets that are still semi-decidable

S  Theorem. K0 is a semi-decidable set.

Proof. We must find a TM that accepts K0 . Here is an idea. Given an arbitrary
input ⟨T, w⟩, the machine must simulate T on w, and if the simulation halts, the
machine must return YES and halt. So, if such a machine exists, it will answer YES
iff ⟨T,w ⟩ ∊ ? K0. But we already know that such a machine exists: it is the Universal
Turing Machine U. Hence, K0 is semi-decidable. ⧠

Comment. This is why K0 is called the universal language.

The last two theorems imply the following consequence:

Corollary. K0 is an undecidable (but still) semi-decidable set.

S  Similarly we prove that K is an undecidable (but still) semi-decidable set.

Borut Robič, Computability &
Computational Complexity

255

S  The are undecidable sets that are not even semi-decidable

S  What about the set , the complement of K0 ?

Theorem. is not a semi-decidable set.

Proof. If were semi-decidable, then both K0 and would be semi-decidable.
But then K0 would be decidable (see Post’s theorem). This would be a
contradiction. So is not semi-decidable. ⧠

S  In the same way we prove that is not a semi-decidable set.

 Exercise. The decision problems corresponding to languages and are:
S  = “Given a TM T and a word w, does T never halt on w ?”

S  = “Given a TM T, does T never halt on ⟨T ⟩ ?”

K0

K0

K0

K0

K0

K

K0 K

D
Halt

D
H

Borut Robič, Computability &
Computational Complexity

256

S  The basic kinds of decision problems

S  We have proved the existence of undecidable semi-decidable sets (e.g. K0 and K)
and the existence of undecidable sets that are not even semi-decidable (and).
Consequently, the class of all sets partitions into three non-empty subclasses:

K0 K

Borut Robič, Computability &
Computational Complexity

257

(cont’d)

S  We can view sets as languages of decision problems. For example, we know
that K0 and K are the languages of decision problems DHalt and DH, resp.
What about the sets and ? These are the languages of decision problems

S  = “Given a TM T and a word w, does T never halt on w ?” and
S  = “Given a TM T, does T never halt on ⟨T ⟩ ?”

S  The class of all decision problems partitions into two non-empty subclasses:
S  the class of decidable problems and
S  the class of undecidable problems.

There is also a third class, the class of semi-decidable problems
(which contains all decidable problems and some, but not all, undecidable problems).

K0 K
D

Halt

D
H

Borut Robič, Computability &
Computational Complexity

258

(cont’d)

S  In other words, a decision problem D can be of one of the 3 kinds:

S  D is decidable.

This means that there is an algorithm that can solve any instance d ∊ D.
Such an algorithm is called the decider of the problem D.

S  D is semi-decidable undecidable.

This means that no algorithm can solve any instance d ∊ D. But there is an
algorithm that can solve any positive d ∊ D. It is called the recognizer of D.

S  D is not semi-decidable.

This means that for any algorithm there is a positive instance and a
negative instance of D such that the algorithm cannot solve either of them.

Borut Robič, Computability &
Computational Complexity

259

S  Complementary sets and decision problems.

S  From the previous theorems it follows that there are only three possibilities
for the decidability of a set S and its complement :
S  S and are decidable (△▲, see figure below);
S  S and are undecidable; one is semi-decidable and the other is not (○●);
S  S and are undecidable and neither is semi-decidable (◻◼).

S  The same holds for the decidability of the corresponding decision problems:

S
S

S

S

8.5 Some Other Incomputable Problems

S  Are there any other incomputable problems? The answer is yes.

S  Since the 1940s many other incomputable problems were discovered. The
first of these problems referred to the properties and the operations of
models of computation. After 1944, more realistic incomputable
problems were (and are still being) discovered in different fields of science
and in other nonscientific fields.

S  In this section we list some of the known incomputable problems,
grouped by the fields in which they occur.
No algorithm can completely solve any of the following problems.

Borut Robič, Computability &
Computational Complexity

260

Borut Robič, Computability &
Computational Complexity

261

S  Problems about algorithms and computer programs.

S  TERMINATION OF ALGORITHMS (PROGRAMS)

Let A be an arbitrary algorithm and d be arbitrary input data. Questions:

u  DTerm = “Does A terminate on every input data?”

u  “Does A terminate on input data d ?”

S  CORRECTNESS OF ALGORITHMS (PROGRAMS)

Let P be an arbitrary computational problem and A an arbitrary algorithm. Question:

u  DCorr = “Does the algorithm code(A) correctly solve the problem code(P)?”

S  EXISTENCE OF SHORTER EQUIVALENT PROGRAMS

Let code(A) be a program describing an algorithm A. Question:

u  “Given a program code(A), is there a shorter equivalent program?”

Borut Robič, Computability &
Computational Complexity

262

S  Problems about programming languages and grammars

S  AMBIGUITY OF CFG GRAMMARS

 Let G be a context-free grammar. Question:

u  “Is there a word that can be generated by G in two different ways?”

S  EQUIVALENCE OF CFG GRAMMARS

 Let G1 and G2 be CFGs. Question:

u  “Do G1 and G2 generate the same language?”

S  OTHER PROPERTIES OF CFG s AND CFL s

Let G and G’ be arbitrary CFGs, and let C and R be an arbitrary CFL and a regular language,
respectively. As usual, 𝛴 is the alphabet. Questions:

u  “Is L(G) = 𝛴* ?” “Is L(G) regular?” “Is R ⊆ L(G)?”

u  “Is L(G) = R?” “Is L(G) ⊆ L(G‘)?” “Is L(G) ⋂ L(G’) = 0?”

u  “Is L(G) ⋂ L(G’) CFL?” “Is C ambiguous CFL?” “Is there a palindrome in L(G)?”

Borut Robič, Computability &
Computational Complexity

263

S  Problems about computable functions

S  INTRINSIC PROPERTIES OF COMPUTABLE FUNTIONS

Let 𝜑: A → B and 𝜓: A → B be arbitrary computable functions. Questions:

u  “Is dom(𝜑) empty?”

u  “Is dom(𝜑) finite?”

u  “Is dom(𝜑) infinite?”

u  “Is A − dom(𝜑) finite?”

u  “Is 𝜑 total?”

u  “Can 𝜑 be extended to a total computable function?”

u  “Is 𝜑 surjective?”

u  “Is 𝜑 defined at x?”

u  “Is 𝜑 defined at x?”

u  “Is 𝜑(x) = y for at least one x?”

u  “Is dom(𝜑) = dom(𝜓)?”

u  “Is 𝜑 = 𝜓?”

Borut Robič, Computability &
Computational Complexity

264

S  Problems from number theory, algebra, and analysis

S  SOLVABILITY OF DIOPHANTINE EQUATUINS

 Let p(x1, …, xn) be an arbitrary polynomial with unknowns x1,…,xn and rational coefficients.
Question:

u  “Does a Diophantine equation p(x1, …, xn) = 0 have a solution?”

S  MORTAL MATRIX PROBLEM

Let M be a finite set of n × n matrices with integer entries. Question:

u  “Can the matrices of M be multiplied in some order, possibly with repetition,
so that the product is zero matrix O ?”

S  EXISTENCE OF ZEROS OF FUNCTIONS

Let f : R → R be an arbitrary elementary function. Question:

u  “Is there a real solution to the equation f (x) = 0 ?”

A function f (x) is elementary if it can be constructed from a finite number of exponentials, logarithms, roots, real
constants, and the variable x by using function composition and the four basic operations + , −, ×, and ÷.

Borut Robič, Computability &
Computational Complexity

265

S  Problems about games

S  DOMINO TILING PROBLEM

 Let T be a finite set of tile templates, each with an unlimited number of copies. Question:

u  “Can every finite polygon be regularly T-tiled?”

S  DOMINO SNAKE PROBLEM

 Let T be a finite set of tile templates and A, B, X arbitrary 1×1 squares in Z2. Question:

u  “Is there a path between A and B which avoids X and can be regularly T-tiled?’’

Borut Robič, Computability &
Computational Complexity

266

S  Post’s correspondence problem

S  POST’S CORRESPONDENCE PROBLEM

 Let C be a finite set of card templates, each with an unlimited number of copies. Question:

u  “Is there a finite C-sequence such that U=L?”

Borut Robič, Computability &
Computational Complexity

267

S  Busy beaver problem

S  Informally, a busy beaver is the most ‘productive’ TM of its kind.

S  What kind of TMs do we mean?

We mean TMs that do not waste time with writing symbols other than 1 or not
moving the window. Let us group such TMs into classes 𝓣n , n = 1,2,…
where 𝓣n contains TMs with the same number of states.

Definition. Define 𝓣n (for n ⩾ 1) to be the class of all TMs that have:
S  the tape unbounded in both ways;
S  n non-final states (including q1) and one final state qn+1 ;
S  𝛴 = {0,1} and 𝛤 = {0,1,⨆};
S  𝛿 that writes only the symbol 1 and moves the window either to L or R.

 Theorem. (Radó) For any n ⩾ 1, there are finitely many TMs in 𝓣n .

Borut Robič, Computability &
Computational Complexity

268

S  Definition. We say that a TM T ∊ 𝓣n is a stopper if T halts on an empty input.

 Theorem. (Radó) For every n ⩾ 1, there exists a stopper in 𝓣n .

Hence there is at least one and at most finitely many (i.e. |𝓣n |) stoppers in 𝓣n .

S  So, there must exist in 𝓣n a stopper that attains, among all the stoppers in 𝓣n ,
the maximum number of 1s that are left on the tape after halting.

Definition. Such a stopper is called the n-state Busy Beaver and denoted n-BB.

S  BUSY BEAVER PROBLEM

 Let T ∊ Ui ⩾ 1 𝓣i be an arbitrary TM. Question: i be an arbitrary TM. Question:

u  “Is T a Busy Beaver?” (i.e. ``Is there n ⩾ 1, such that T = n-BB?’’)

S  Definition The Busy Beaver function is s(n) = ‘the number of 1s attained by n-BB’.

 Theorem. The Busy Beaver function is incomputable.

8.6 Dictionary

undecidability neodločljivost computational problems računski problemi decision problem odločitveni problem
search problem problem iskanja, iskalni problem counting problem problem preštevanja generation problem problem
generiranja language of a decision problem jezik odločitvenega problema instance primerek problema, naloga coding
function kodirna funkcija code koda decidable, semi-decidable, undecidable decision problem odločljiv, polodločljiv,
neodločljiv odločitveni problem computable/incomputable problem izračunljiv/neizračunljiv problem solvable/
unsolvable problem rešljiv/nerešljiv problem halting problem problem ustavitve universal language univerzalni jezik
diagonal language diagonalni jezik termination of ustavljivost correctness pravilnost ambiguity dvoumnost intrinsic
property vsebovana (naravna, bistvena) lastnost solvability of Diophantine equations rešljivost Diofantskih enačb
tiling problem problem tlakovanja Post’s correspondence problem Postov korespondenčni problem busy beaver
problem problem garača stopper stroj, ki se ustavi (uspešnež?)

Borut Robič, Computability &
Computational Complexity

269

S

9
The Chomsky Hierarchy

Borut Robič, Computability &
Computational Complexity

270

Contents

S  THIS YEAR LEFT OUT

Borut Robič, Computability &
Computational Complexity

271

S

10
Computational Complexity

Theory

Borut Robič, Computability &
Computational Complexity

272

Contents

S  Introduction

S  Deterministic time and space (the classes DTIME, DSPACE)

S  Nondeterministic time and space (the classes NTIME, NSPACE)

S  Tape compression, linear speedup, and reductions of the number of tapes

S  Relations between the classes DTIME, DSPACE, NTIME, NSPACE

S  The classes P, NP, PSPACE, NPSPACE

S  The question P =? NP

S  NP-complete and NP-hard problems

Borut Robič, Computability &
Computational Complexity

273

10.1 Introduction

S  We were interested in
what can be computed
and what cannot,
regardless of the amount
of computational resources
(time, space) needed for that.

S  We discovered that
there are computable
and incomputable problems.

Borut Robič, Computability &
Computational Complexity

274

 incomputable
 problems

 computable
problems

No algorithm can solve any of the
incomputable problems in general.
There are infinitely many different
degrees of incomputability. There
is no most incomputable problem!

Each computable problem has an
algorithm that solves it. Intuition tells us:
given more time/space, larger instances
or more difficult problems can be solved.

How much time/space can we afford?

10.2 Deterministic time and space
 (classes DTIME, DSPACE)

S  Question: How much time or space does an algorithm need
 to solve a (decidable) decision problem D ?

S  Due to the link ❉ between decision problems and their languages
we can express this question in terms of formal languages:

Question: How many steps or tape cells needs a TM
 to recognize the language L(D) of a decision problem D ?

S  In this section we make these questions more exact.

Borut Robič, Computability &
Computational Complexity

275

Borut Robič, Computability &
Computational Complexity

276

S  Deterministic time complexity & complexity classes DTIME

S  Definition. Let M = (Q,𝛴,𝛤,𝛿,q1,⨆,F) be a DTM with k ⩾1 2-way infinite tapes.
We say that DTM M has (det.) time complexity T(n)
if, for every w ∊ 𝛴* of length n, M makes ⩽ T(n) steps before halting.

S  It is assumed that M reads all of w; thus T(|w|) ⩾|w|+ 1, so T(n) ⩾ n + 1.
So T(n) is at least linear.

S  A TM M of time complexity T(n) can decide w ∊? L(M) in ⩽ T(|w|) steps.

 This motivates the next definition.

Borut Robič, Computability &
Computational Complexity

277

(con’t)

S  Definitions. A language L has (det.) time complexity T(n)
if there is a DTM M of (det.) time complexity T(n) such that L = L(M).
We define the class of all such languages by

 DTIME(T (n)) = {L|L is a language ∧ L has (det.) time complexity T (n)}
 Informally, DTIME(T (n)) contains all Ls for which the problem w ∊? L can be det. solved in ⩽T (|⟨w ⟩|) time.

S  Using the link ❉, we can restate both definitions in terms of decision problems:

Definitions. A decision problem D has (det.) time complexity T(n)
if its language L(D) has (det.) time complexity T(n).
We define the class of all such decision problems by

 DTIME(T(n)) = {D|D is a dec. prob. ∧ D has (det.) time complexity T (n)}
 Informally, DTIME(T (n)) has all Ds whose instances d can be deterministically solved in ⩽T (|⟨d ⟩|) time.

Borut Robič, Computability &
Computational Complexity

278

S  Deterministic space complexity & complexity classes DSPACE

S  Definition. Let M = (Q,𝛴,𝛤,𝛿,q1,⨆,F) be a DTM with 1 input tape and k ⩾1 work tapes.
We say that DTM M has (det.) space complexity S(n)
if, for every input w ∊ 𝛴* of length n, M uses ⩽ S(n) cells on each work tape
before halting.

S  Note: input-tape cells do not count.

S  It is assumed that M uses at least the cell under the initial position of the window.
So S(n) is at least constant function 1.

S  A TM M of space complexity S(n) can decide w ∊? L(M) on space ⩽ S(n).

 This motivates the next definition.

Borut Robič, Computability &
Computational Complexity

279

(con’t)

S  Definitions. A language L has (det.) space complexity S(n)
if there is a DTM M of (det.) space complexity S(n) such that L = L(M).
We define the class of all such languages by

 DSPACE(S (n)) = {L|L is a language ∧ L has (det.) space complexity S (n)}
 Informally, DSPACE(S (n)) contains all Ls for which the problem w ∊? L can be det. solved on ⩽ S(|w|) space.

S  Again, using ❉ we can restate both definitions in terms of decision problems:

Definitions. A decision problem D has (det.) space complexity S(n)
if its language L(D) has (det.) space complexity S(n).
We define the class of all such decision problems by

 DSPACE(S(n)) = {D|D is a dec. prob. ∧ D is of (det.) space complexity S (n)}
 Informally, DSPACE(S (n)) has all Ds whose instances d can be deterministically solved on ⩽ S (|⟨d ⟩|) space.

10.3 Nondeterministic time and space
(classes NTIME, NSPACE)

S  Now suppose that we could use nondeterministic TMs (i.e. NTMs).
Question: How many steps or tape cells would require a NTM

 to recognize the language L(D) of a decision problem D ?

S  Stated in terms of algorithms and decision problems:
Question: How much time or space would require a non-det. algorithm

 to solve a decision problem D ?

S  We now make these questions more precise.

Borut Robič, Computability &
Computational Complexity

280

Borut Robič, Computability &
Computational Complexity

281

S  Nondeterministic time complexity & complexity classes NTIME

S  Definition. Let N = (Q, 𝛴, 𝛤, 𝛿, q1, ⨆, F) be a NTM.
We say that NTM N is of nondet. time complexity T(n)
if, for every input w ∊ 𝛴* of length n, there exists a computation
in which N makes ⩽ T(n) steps before halting.

S  Again, it is assumed that N reads all of w; thus T(|w|)⩾|w|+ 1, so T(n) ⩾ n + 1.
So T(n) is at least a linear function.

S  A NTM N of time complexity T(n) can decide w ∊? L(M) in ⩽ T(|w|) steps.

 This motivates the next definition.

Borut Robič, Computability &
Computational Complexity

282

(con’t)

S  Definitions. A language L is of nondet. time complexity T(n)
if there is a NTM N of nondet. time complexity T(n) such that L = L(N).
The class of all such languages is
 NTIME(T (n)) = {L|L is a language ∧ L has nondet. time complexity T (n)}

 Informally, NTIME(T (n)) contains all Ls for which the problem w ∊? L can be nondet. solved in ⩽ T (|w|) time.

S  Restating both definitions in terms of decision problems we obtain:

Definitions. A decision problem D is of nondet. time complexity T(n)
if its language L(D) is of nondet. time complexity T(n).
We define the class of all such decision problems by

 NTIME(T(n)) = {D|D is a dec. prob. ∧ D is of nondet. time complexity T (n)}
 Informally, NTIME(T (n)) has all Ds whose instances d can be nondet. solved in ⩽ T (|⟨d ⟩|) time.

Borut Robič, Computability &
Computational Complexity

283

S  Nondeterministic space complexity & complexity classes NSPACE

S  Definition. Let N = (Q,𝛴,𝛤,𝛿,q1,⨆,F) be a NTM with 1 input tape and k ⩾1 work tapes.
We say that NTM N is of nondet. space complexity S(n)
if, for every input w ∊ 𝛴* of length n, there exists a computation in which N uses,
before halting, ⩽ S(n) cells on each work tape.

S  Again, the input-tape cells do not count.

S  It is assumed that M uses at least the cell under the initial position of the window.
So S(n) is at least constant function 1.

S  A NTM N of nondet. space complexity S(n) can decide w ∊? L(M) on ⩽ S(|w|) space.

 This motivates the next definition.

Borut Robič, Computability &
Computational Complexity

284

(con’t)

S  Definitions. A language L has nondet. space complexity S(n)
if there is a NTM N of nondet. space complexity S(n) such that L = L(M).
The class of all languages is
 NSPACE(S (n)) = {L|L is a language ∧ L is of nondet. space complexity S (n)}

 Informally, NSPACE(S (n)) has all Ls for which w ∊? L can be nondeterministically solved on ⩽ S (|w|) space.

S  In terms of decision problems:

Definitions. A decision problem D has nondet. space complexity S(n)
if its language L(D) has nondet. space complexity S(n).
We define the class of all such decision problems by

 NSPACE(S(n)) = {D|D is a dec. prob. ∧ D has nondet. space complexity S(n)}

 Informally, NSPACE(S (n)) has all Ds whose instances d can be nondet. solved on ⩽ S (|⟨d ⟩|) space.

Borut Robič, Computability &
Computational Complexity

285

S  Summary of complexity classes

S  In terms of formal languages:
DTIME(T (n)) = {L|L is a language ∧ L has time complexity T (n)}
DSPACE(S (n)) = {L|L is a language ∧ L has space complexity S (n)}
NTIME(T (n)) = {L|L is a language ∧ L has nondet. time complexity T (n)}
NSPACE(S (n)) = {L|L is a language ∧ L has nondet. space complexity S (n)}

S  In terms of decision problems:
DTIME(T (n)) = {D|D is a decision problem ∧ L(D) has time complexity T (n)}
DSPACE(S (n)) = {D|D is a decision problem ∧ L(D) has space complexity S (n)}
NTIME(T (n)) = {D|D is a decision problem ∧ L(D) has nondet. time complexity T (n)}
NSPACE(S (n)) = {D|D is a decision problem ∧ L(D) has nondet. space complexity S (n)}

S  Informally: DTIME(T (n)) = {decision problems solvable deterministically in time T(n)}
 DSPACE(S (n)) = {decision problems solvable deterministically on space S(n)}
 NTIME(T (n)) = {decision problems solvable nondeterministically in time T(n)}
 NSPACE(S (n)) = {decision problems solvable nondeterministically on space S(n)}

10.4 Tape compression, linear speedup, and
reductions in the number of tapes

S  In this section we show that
S  space complexity can always be reduced by a constant factor

(by encoding several tape symbols into one); and

S  time complexity can always be reduced by a constant factor
(by grouping several steps into one)

S  So, we we can ignore constant factors of functions T(n), S(n)
and focus on their rate of growth.

Borut Robič, Computability &
Computational Complexity

286

Borut Robič, Computability &
Computational Complexity

287

S  Tape compression

S  Motivation. We defined the space needed by a computation of a TM to be the
maximum number of cells that are used on any work tape.
Idea: Let is encode several symbols by one symbol from a larger alphabet.
S  Example. Group 00110110 into 00 11 01 10, and encode each pair by a symbol from

{0,1,2,3}, say by 00→0, 01→1, 10→2, 1→3. The result is a word 0312 with length 4.

By expanding alphabets, we reduced the space. This holds in general.

S  Theorem. If L has space complexity S(n), then for any c > 0, L has space
complexity c S(n). This also holds for the nondet. space complexity.

 Proof. Along the example in the motivation. ⧠

S  Corollary: For any c > 0 is DSPACE(S(n)) = DSPACE(cS(n))

 and NSPACE(S(n)) = NSPACE(cS(n))

Borut Robič, Computability &
Computational Complexity

288

S  Linear speedup

S  Can we do similarly with time? Idea: Since the time needed by a computation is
the number of steps made before halting, we group several steps into a new, larger step.
To do similarly as with space, it turns out that two conditions must be fulfilled:

S  TM must have at least 2 tapes (i.e. k>1),

S  infn→∞T(n)/n = ∞ must hold. (Definition: infn→∞ f (n) = limn→∞ glb{f (n), f (n+1), …}

Informally: T(n) must increase (at least slightly) faster than n. Only then there will remain, after
reading the input, some time available for computation.

S  Theorem. Let infn→∞T(n)/n = ∞ and k>1. Then:
If L has time complexity T(n), then for any c > 0, L has time complexity cT(n).
This also holds for the nondet. space complexity.

S  Corollary: If inf T(n)/n = ∞, then for any c > 0
 DTIME(T(n)) = DTIME(cT(n))

 and NTIME(T(n)) = NTIME(cT(n))

Borut Robič, Computability &
Computational Complexity

289

S  Summary

S  Under certain (but reasonable) conditions:

DTIME(T(n)) = DTIME(cT(n))

NTIME(T(n)) = NTIME(cT(n))

DSPACE(S(n)) = DSPACE(cS(n))

NSPACE(S(n)) = NSPACE(cS(n))

S  Positive constants c have no impact on the contents of the class.
S  Example: DTIME(n2) = DTIME(0.33 n2) = DTIME(4n2) = DTIME(7n2) = …

S  Instead of writing that a decision problem D is in DTIME(n2),
we can say that D has (det.) time complexity of the order O(n2).

Borut Robič, Computability &
Computational Complexity

290

S  Reductions in the number of tapes

S  To study time complexity we use TMs with k ⩾1 tapes.
Question: How does reduction of the number k affect the time complexity?
Answer: if we restrict TMs to 1 tape, the time complexity may become squared,
but if we restrict them to 2 tapes, the loss of time is smaller.
Theorem.
S  If L ∊ DTIME(T(n)), then L is accepted in time O(T 2(n)) by a 1-tape TM.

If L ∊ NTIME(T(n)), then L is accepted in time O(T 2(n)) by a 1-tape NTM.
If L ∊ DTIME(T(n)), then L is accepted in time O(T(n) logT(n)) by a 2-tape TM.
If L ∊ NTIME(T(n)), then L is accepted in time O(T(n) logT(n)) by a 2-tape NTM.

S  To study space complexity we use TMs with k ⩾1 work tapes and 1 input tape.
Question: How does reduction in k affect the space complexity?
Answer: The reduction of tapes does not affect space complexity.
Theorem. If L is accepted by a k-work-tape TM of space complexity S(n), then L is
accepted by a 1-work-tape TM of space complexity S(n).

10.5 Relations between
 DTIME, DSPACE, NTIME, NSPACE

S  What are inclusions (i.e. ⊆) between the introduced complexity classes?
We are interested in the inclusions

S  between the classes of the same kind (e.g. DTIME(T(n)) with various T(n))

S  between different classes (e.g. DTIME and NTIME with unspecified T(n))

S  We will see that
S  for each CLASS (of the introduced classes) there is an infinite hierarchy
 CLASS(f1(n)) ⊊ CLASS(f2(n)) ⊊ … for some functions fi (n), i = 1, 2, …

S  replacement of a nondeterministic algorithm by a deterministic one causes at
most exponential increase in time complexity and at most quadratic increase
in space complexity.

Borut Robič, Computability &
Computational Complexity

291

Borut Robič, Computability &
Computational Complexity

292

S  Relations between complexity classes of the same kind

S  Hierarchies, …

THIS YEAR LEFT OUT.

Borut Robič, Computability &
Computational Complexity

293

S  Relations between different complexity classes

S  The next theorem states the main inclusions between different classes.

 Theorem.

S  DTIME(T(n)) ⊆ DSPACE(T(n))
i.e. What can be solved in time O(T(n)), can also be solved on space O(T(n)).

S  L ∊ DSPACE(S(n)) ∧ S(n) ⩾ log2 n ⇒ ∃c : L ∊ DTIME(c
S(n))

i.e. What can be solved on space O(S(n)), can also be solved in (at most) time O(cS(n)). (Here c depends on L.)

S  L ∊ NTIME (T(n)) ⇒ ∃c : L ∊ DTIME(cT(n))
i.e. What can be solved nondeterministically in time O(T(n)), can be solved deterministically in (at most) time O(cT(n)).
Consequently, the substitution of a nondeterministic algorithm with a deterministic one causes at most exponential
increase in the time required to solve a problem.

S  NSPACE(S(n)) ⊆ DSPACE(S2(n)), if S(n) ⩾ log2 n ∧ S(n) is ``well-behaved.’’

i.e. What can be solved nondeterministically on space O(S(n)), can also be solved deterministically on space O(S2(n)).
Consequently, the substitution of a nondeterministic algorithm with a deterministic one causes at most quadratic
increase in the space required to solve a problem.

Borut Robič, Computability &
Computational Complexity

294

S  ``Well-behaved’’ complexity functions

S  To avoid some pathological cases, we often use complexity functions S(n),T(n)
that are ``well-behaved.’’ Below we define what ``well-behaved’’ means.

S  Definition. A function S(n) is space constructible if there is a TM M of space
complexity S(n), such that for each n, there exists an input of length n on which
M uses exactly S(n) tape cells. If for each n, M uses exactly S(n) cells on any
input of length n, then we say that S(n) is fully space constructible.

S  Definition. A function T(n) is time constructible if there is a TM M of time
complexity T(n), such that for each n, there exists an input of length n on which
M makes exactly T(n) moves. If for all n, M makes exactly T(n) moves on any
input of length n, then we say that T(n) is fully time constructible.

The sets of space and time constructible functions are very rich and include all common

functions. Moreover, most common functions are also fully space and fully time constructible.

Borut Robič, Computability &
Computational Complexity

295

S  Proofs.

 THIS YEAR LEFT OUT.

 ⧠

10.6 The classes P, NP, PSPACE, NPSPACE

S  Of practical interest are the complexity classes
S  DTIME(T(n)),

S  NTIME(T(n)),

S  DSPACE(S(n)),

S  NSPACE(S(n)),

 whose complexity functions T(n) and S(n) are polynomials.

Borut Robič, Computability &
Computational Complexity

296

Borut Robič, Computability &
Computational Complexity

297

S  Why polynomials?

S  The requirements of a computation for a computational resource (e.g. time,
space) are considered to be reasonable if they are bounded by some polynomial.

S  The following table shows how exponential time complexity, such as T(n) = 2n or T(n) = 3n , becomes
unacceptably large even for modest values of n (e.g. n>20).

 T(n)

 3n 0.059 sec 58 min 6.5 years 3855 centuries 2 ·108 centuries 1.3 ·1013 centuries

 2n 0.001 sec 1.0 sec 17.9 min 12.7 days 35.7 years 366 centuries

 n5 1 sec 3.2 sec 24.3 sec 1.7 min 5.2 min 13.0 min

 n3 0.001 sec 0.008 sec 0.027 sec 0.064 sec 0.125 sec 0.216 sec

 n2 0.0001 sec 0.0004 sec 0.0009 sec 0.0016 sec 0.0025 sec 0.0036 sec

 n 0,00001 sec 0.00002 sec 0.00003 sec 0.00004 sec 0.00005 sec 0.00006 sec

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

Borut Robič, Computability &
Computational Complexity

298

S  P, NP, PSPACE, NPSPACE

S  Definition. Define the complexity classes P, NP, PSPACE and NPSPACE as:

S  P = ∪i⩾1DTIME(ni)
 is the class of all decision problems solvable in polynomial time

S  NP = ∪i⩾1NTIME(ni)
 is the class of all decision problems nondetermistically solvable in polynomial time

S  PSPACE = ∪i⩾1DSPACE(ni)

 is the class of all decision problems solvable on polynomial space

S  NPSPACE = ∪i⩾1NSPACE (ni)
 is the class of all decision problems nondeterministically solvable on polynomial space

Borut Robič, Computability &
Computational Complexity

299

S  The basic relations (between P, NP, PSPACE, NPSPACE)

S  Theorem. The following inclusions hold: P ⊆ NP ⊆ PSPACE = NPSPACE

 Proof.

S  (P ⊆ NP) Every deterministic TM of polynomial time complexity can be viewed as
a (trivial) nondeterministic TM of the same time complexity.

S  (NP ⊆PSPACE) If L ∊ NP, then∃k such that L ∊ NTIME(nk). So (by theorem)
L ∊ NSPACE(nk), and hence (by Savitch) L ∊ DSPACE(n2k). Therefore L ∊ PSPACE.

S  (PSPACE = NPSPACE) Clearly, PSPACE ⊆ NPSPACE. Now the other direction:

NPSPACE =(def)= ∪ NSPACE(ni) ⊆(by Savitch)⊆ ∪ DSPACE(n j) ⊆ PSPACE.

⧠

10.7 The question P =? NP

S  We’ve just proved: PSPACE = NPSPACE.
We can interpret this as follows:

When space complexity is polynomial,
nondeterminism adds nothing to the computational power.

S  Does similar hold for time too? (Recall: P ⊆NP.)

 So, is it: P = NP ?

 Or is it: P ⊊ NP ?

S  In spite of intense research of world’s most eminent researchers in
the last decades, P =? NP remains open; it’s the main question of TCS.

Borut Robič, Computability &
Computational Complexity

300

Borut Robič, Computability &
Computational Complexity

301

Why is P =? NP so important ?

S  Many practically important decision problems are in NP. Each such problem D has
a nondeterministic algorithm ND that solves D in nondeterministic polynomial time.

S  But nondeterministic algorithms are unrealistic because no real computer can
directly execute any of them. (Indeed, how could a real computer always
unmistakably make the right choice from several possible alternatives?)

S  So, we must replace ND by an equivalent deterministic algorithm AD that
computes the same result as ND by simulating each nondeterministic choice of ND
by a sequence of deterministic steps.

S  Clearly, AD requires additional time (compared with ND) to obtain the same
result. But, how much time in total does AD need to solve D?

Borut Robič, Computability &
Computational Complexity

302

S  Recall the theorem: L ∊ NTIME (T(n)) ⇒ ∃c : L ∊ DTIME(cT(n)). It tells us that
the substitution of a nondeterministic algorithm with a deterministic one may
cause at most exponential increase in the time required to solve a problem.

S  In our case, D ∊ NP, i.e. D ∊ NTIME(nk) for some k⩾1. So D ∊ DTIME().
Hence, D is deterministically solvable in time.
In other words, AD requires at most O() time to solve D.

S  But, can AD, in spite of the upper bound O(), solve D in deterministic polynomial time?

S  If so, is this true for any D ∊ NP? This question is equivalent to ``Is P = NP?’’

S  If P = NP, then every D ∊ NP is deterministically solvable in polynomial time.
So the question ``Is P = NP?’’ can also be stated as follows:

 Is it true that when time complexity is polynomial,
 nondeterminism adds nothing to the computational power ?

cn
k

cn
k

cn
k

cn
k

Borut Robič, Computability &
Computational Complexity

303

S  How to approach the question P =? NP ?

S  The prevalent belief is that P ⧧ NP (i.e. P ⊊ NP).
 Why? Some consequences of P = NP would be just too surprising.

S  So we try to prove that P ⊊ NP.

S  How? An important method is:

1.  find the ``most difficult’’ (i.e. ``hardest’’) problem in NP;
2.  prove that this problem is not in P.

The method is based on our intuition which suggests that

S  if there are any problems in NP−P,
then the ``most difficult’’ problem in NP is one of them;

S  it is easier to prove that this ``most difficult’’ problem in NP is not in P,
than to prove that some other (``less difficult’’) problem in NP is not in P.

Borut Robič, Computability &
Computational Complexity

304

S  Problem reductions

S  When is a problem the ``most difficult’’ in NP? How do we define that?
 Intuitively: A problem D* is the ``most difficult’’ in NP if every D ∊ NP is ``at most as difficult as’’ D*.

S  Idea: Suppose that there existed a D * ∊ NP, such that we could ``easily’’ reduce

every D ∊ NP to this D * in the following sense:
S  there would exist a function r : D → D *

S  that could ``easily’’ transform any
instance d ∊ D into an instance r (d) ∊ D *

S  such that the solution s to r (d) could be
``easily’’ transformed into the solution ``?’’ to d.

Then, for every problem D, solving of D could be ``easily’’ replaced by solving of D *.

S  If this were possible, then every D could be viewed as ``at most as difficult as’’ D*.
In another words, D* could be viewed as the ``most difficult’’ problem in NP.

d∊D

r(d)∊D*

r

SolutionsInstances

 s

 ?

solve

Borut Robič, Computability &
Computational Complexity

305

S  Polynomial-time reductions

S  But, we must still define what the term ``easily’’ should mean. Let us define
 ``easily’’ = ``in deterministic polynomial time’’

S  We are now ready to state the following

Definition. A problem D ∊ NP is polynomial-time reducible to a problem D’,
i.e. D ⩽p D ’, if there is a deterministic TM M of polynomial time complexity
that, for any d ∊ D, returns a d’ ∊ D’, such that d is positive ⟺ d’ is positive.
The relation ⩽p is called polynomial-time reduction.
 So, M replaces, in polynomial time, d ∊ D with d ’ ∊ D ’ that has the same answer as d.

 (M takes <d> and in poly. time returns a word M(<d>), where <d> ∊ L(D) ⟺ M(<d>) ∊ L(D ’).

S  So, the ``most difficult’’ problem in NP can be any problem D* for which:
S  D* ∊ NP
S  D ⩽p D*, for every D ∊ NP

In the next section we will call such a problem NP-complete.

10.8 NP-complete and NP-hard problems

S  In this section we define the notion of the NP-complete problem.
Informally, this is just another naming for the ``the most difficult”
problems in NP.

S  We then show that there actually exists an NP-complete problem.

S  Finally we describe, how NP-completeness of other problems can
be proved.

Borut Robič, Computability &
Computational Complexity

306

Borut Robič, Computability &
Computational Complexity

307

S  NP-complete and NP-hard problems

S  We have seen that the ``most difficult’’ problem in NP could be defined as the
problem D* that has the following property:

S  D* ∊ NP

S  D ⩽p D*, for every D ∊ NP

S  We now give the official definition of such problems.

Definitions. A problem D* is said to be NP-hard if D ⩽p D*, for every D ∊ NP.

A problem D* is said to be NP-complete if

S  D* ∊ NP

S  D ⩽p D*, for every D ∊ NP.

S  Hence, D* is NP-complete if D* is in NP and D* is NP-hard.

Borut Robič, Computability &
Computational Complexity

308

(cont’d)

S  We can depict the NP-completeness and NP-hardness of D* as follows:

The dotted arrows represent polynomial-time reductions D ⩽p D*.
Note: an NP-hard D* may or may not be in NP.

D
D

D
D

D

D

D
D

NP

D*

D
D

D

DD

D

D
D

NP

D*

D* is NP-hard D* is NP-complete

⩽p

⩽p

⩽p⩽p⩽p⩽p
⩽p
⩽p⩽p

⩽p
⩽p

⩽p⩽p
⩽p

⩽p
⩽p

Borut Robič, Computability &
Computational Complexity

309

S  An NP-complete problem, SAT

S  Question. Is there any NP-complete problem? That is, does D* exist?
Answer. Yes, there are thousands of them! The first such problem
was discovered independently by Cook and Levin.

S  Definition. A Boolean expression is inductively defined as follows:
S  Boolean variables x1, x2, … are Boolean expressions.
S  If E, F are Boolean expressions then so are ¬E, E ⋁ F, and E ⋀ F.

S  Definition. A Boolean expression E is satisfiable if the variables of E can be
consistently replaced with values TRUE/FALSE so that E evaluates to TRUE.

S  Definition. The problem SAT = ``Is a Boolean expression E satisfiable?’’
 SAT is called the Satisfiability Problem.

S  Theorem (Cook-Levin). SAT is NP-complete.
So, for D* we can take SAT.

Borut Robič, Computability &
Computational Complexity

310

S  Proof idea.

S  THIS YEAR LEFT OUT

S  ⧠

Borut Robič, Computability &
Computational Complexity

311

S  Proving NP-completeness of problems

S  Here are two theorems that we will need shortly:

 Theorem. Let D ⩽p D ’. Then

S  D ’ ∊ P ⇒ D ∊ P

S  D ’ ∊ NP ⇒ D ∊ NP.

So, any problem D that can be ⩽p-reduced to a problem in P (or in NP), is also in P (or NP).

S  Theorem. The relation ⩽p is transitive.

 In other words: D ⩽p D ’ ∧ D ’ ⩽p D ’’ ⇒ D ⩽p D ’’.

Borut Robič, Computability &
Computational Complexity

312

S  Corollary. The following holds:
S  D* is NP-hard ∧ D* ⩽p D✩ ⇒ D✩ is NP-hard

S  D* is NP-complete ∧ D* ⩽p D✩ ∧ D✩∊ NP ⇒ D✩ is NP-complete

S  Below we depict the method of proving NP-hardness or NP-completeness of D✩:

 D
D

D

DD
D

D
D

NP

D*

D
D

D

DD

D

D
D

NP

D*

D� is NP-hard D� is NP-complete

D�

D�

⩽p

⩽p

Borut Robič, Computability &
Computational Complexity

313

S  Examples of NP-complete problems

S  In this way, several thousands of problems have been proved NP-complete.
Here are just three of them.

S  PARTITION

Instance: A finite set A of natural numbers.

Question: Is there a subset B ⊆ A such that

S  HAMILTONIAN CYCLE

Instance: A graph G(V,E).

Question: Is there a Hamiltonian cycle in G?

S  BIN PACKING

Instance: A finite set A of natural numbers, and natural numbers c and k.

Question: Is there a partition of U into disjoint sets U1, U2, …, Uk such that the sum of numbers
 in each Ui is at most c?

X

a2B

a =
X

a2A�B

a

Borut Robič, Computability &
Computational Complexity

314

S  Summary.

S  If P ⧧ NP, then the situation in the class NP is depicted below:

 Here:
S  NPC is the class of all NP-complete problems.

S  NPI is the class of all NP-intermediate problems. What????

 Ladner has proved: If P⧧NP, then there exists a problem in NP
 that is neither in P nor in NPC.
 Such a problem is called NP-intermediate.
 A candidate problem for NPI: Is a given natural number composite?

If P ⧧ NP, then no problem in NPC or NPI has polynomial time complexity.

NP

If P ⧧ NP

NPC

NPI

P

Borut Robič, Computability &
Computational Complexity

315

S  (cont’d)

S  The problems in P are called tractable.
Other computable problems are intractable.

S  The exception are NPC and NPI,
because it is still not clear whether
they are tractable or intractable.

 incomputable
 problems

 computable
problems

intractable

P

NPC
 NPI

tractable

?

10.9 Dictionary

computational complexity računska zahtevnost computational resource računski vir (non)deterministic time
complexity (ne)deterministična časovna zahtevnost complexity class razred zahtevnosti (non)deterministic space
complexity (ne)deterministična prostorska zahtevnost tape compression stiskanje trakov linear speedup pohitritev
reduction in the number of tapes zmanjšanje števila trakov “well-behaved” function ,,lepa, pohlevna” funkcija space/
time constructible function prostorsko/časovno predstavljiva (ali verna) funkcija fully space/time constructible
function popolnoma prostorsko/časovno predstavljiva (ali verna) funkcija polynomial polinom (non)deterministic
polynomial time/space complexity (ne)deterministična polinomska časovna/prostorska zahtevnost hard/difficult
problem težek problem problem reduction prevedba problema easy problem lahek problem polynomial-time reduction
polinomska časovna prevedba logarithmic-space reduction logaritmična prostorska prevedba NP-complete problem
NP-poln problem NP-hard problem NP-težek problem Boolean expression Boolov izraz satisfiable izpolnljiv
satisfiability problem problem izpolnljivosti NP-intermediate problem NP-vmesni problem (in)tractable
(ne)obvladljiv

Borut Robič, Computability &
Computational Complexity

316

S

11
Intractable Problems

Borut Robič, Computability &
Computational Complexity

317

Contents

S  THIS YEAR LEFT OUT

Borut Robič, Computability &
Computational Complexity

318

S

12
Coping with Intractable

Problems

Borut Robič, Computability &
Computational Complexity

319

Contents

S  THIS YEAR LEFT OUT

Borut Robič, Computability &
Computational Complexity

320

Borut Robič, Computability &
Computational Complexity

321

 END

